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SUlVlMARY

The purpose of this research is to further develop an understanding of how

nonminimum phase zero location is affected by structural link design. As the demand

for light-weight robots that can operate in a large workspace increases, the structural

flexibility of the links becomes more of an issue in controls problems. When the

objective is to accurately position the tip while the robot is actuated at the base, the

system is nonminimum phase. One important characteristic of nonminimum phase

systems is system zeros in the fight half of the Laplace plane. The ability to pick the

location of these nonminimum phase zeros would give the designer a new freedom

similar to pole placement. --

The research targets a single-link manipulator operating in the horizontal plane

and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer

matrix theory, one can consider link designs that have variable cross-sections along the

length of the beam. A FORTRAN program was developed to determine the location of

poles and zeros given the system model. The program was used to confirm previous

research on nonminimum phase systems, and develop a relationship for designing linearly

tapered links. The method allows the designer to choose the location of the first pole and

zero and then defines the appropriate taper to match the desired locations. With the pole

and zero location fixed, the designer can independently change the link's moment of

X



inertia about its axis of rotation by adjusting the height of the beam. These results can

be applied to inverse dynamic algorithms currently under development at Georgia Tech.
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CHAPTER 1

INTRODUCTION

1.1 Problem D_fini¢ion

As research for new applications for industrial robots proceeds, one major area

of research is in robot flexibility. Traditionally, industrial robots are designed with stiff

links, so the dynamics of the links can be assumed negligible in positioning the robot.

In theory then as the robot moves, the links remain straight and do not bend. The tip

position of the robot can be found geometrically from joint position at any given

moment. In flexible robotics the links are no longer assumed to be rigid. As the robot

moves, the links flex which can cause unwanted vibrations in the robot. These vibrations

can cause error in positioning the tip of the robot.

Some of the applications motivating research in this field are assembly of space

structures, inspection of large structures, and nuclear waste retrieval. When transporting

things to outer space, weight is always a concern. Light-weight robots designed for

space applications will be flexible and must be controlled as such. Large structures like

airplanes and submarines require careful inspection to insure detection of flaws. The

inspections can be laborious and repetitive which is ideal work for a robot. The large

workspace dictates the links be as light as possible resulting in flexible links. An

emerging area of research is remote handling of nuclear waste. Existing nuclear waste

storage facilities axe no longer safe and the waste needs to be removed and restored in



safer containers. The old containers are very large, while the access is usually quite

small. Again, a light-weight slender robot with a large workspace is required. All of

these applications are driving the research in the field of flexible robotics.

A common problem with flexible systems is how to control the system accurately

to position the end-point. Rigid link robots are typically collocated systems; that is, the

actuators and sensors are located at the same location (ie., a joint). With a flexible

system this is not always the case. Most fiexible systems are noncollocated. The system

output (actuator torque) is generally located at the base of the system, while the output

(tip position) is located at the end of the system. Noncollocated systems exhibit

nonminimum phase behavior which results directly from the system zeros in the right-

half of the s-plane (RHP zeros).

Controller design for collocated systems has been heavily researched and is well

understood compared to controller design for noncollocated systems. In noncollocated

systems, uncertainties from model inaccuracies and modal truncation present fundamental

problems with system performance and stability [18]. The fundamental difference

between collocated and noncollocated systems is the presence of these RHP zeros. To

advance controller design for noncollocated systems, research needs to be conducted into

the factors that affect the location of these RHP zeros. This research targets the

relationship between RHP zeros and structural design.

1,2 Review of Related Research

Although research on RHP zeros is limited, there has been some notable research

done in the past. Some of the research deals directly with the problems presented by



nonminimum phase systems, while other research examines different techniques to

change the system characteristics from nonminimum phase to minimum phase.

In 1988, Nebot and Brubaker [13] experimented with a single-link flexible

manipulator. The manipulator was constructed from thin plates connected by several

bridges along their length. This provided flexibility in the horizontal plane, while

maintaining stiffness in the vertical plane and torsional mode. They analytically

determined the location of the first six zeros and determined three of them to be RHP

zeros. They concluded these RHP zeros pose a formidable constraint in the controller

design task.

In 1989, Spector and Flashner [19] investigated the sensitivity effects of structural

models for noncollocated control systems. They considered a pinned-free beam with

discrete end-point mass and inertia. They used transfer matrices to analyze the system.

From the results they concluded the following. First, accurate dynamic modeling is

critical in noncollocated control design. Poor modeling can result in interchanging the

pole/zero order which produces phase errors resulting in closed-loop instability. Second,

accurate modeling of zero location near the system bandwidth is critical in modeling

noncollocated systems. Third, zeros are more sensitive to perturbations in system

parameters and boundary conditions than modal frequencies. They suggest more research

attention be given to modeling system zeros in noncoUocated systems.

In 1990, Spector and Flashner [18] again studied modeling and design

implications pertinent to noncollocated control. A similar system was used, a pinned-free

beam without end-point mass, only the system was analyzed using wave number plane
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theory. They also studied the effects of varying sensor/actuator separation distance.

Most conclusions are identical to those drawn from the previous paper. In addition, they

concluded all noncollocated systems are nonminimum phase above some finite frequency

(the location of the lowest RHP zero dictates this frequency), and this frequency

increases as sensor/actuator distance increases. Again they recommend more research

into the modeling of zeros in noncollocated systems.

Also in 1990, Park and Asada [15],[14] investigated a minimum phase flexible

arm with a torque actuation mechanism. BasicaUy they used a cable mechanism to

transfer the torque actuation point from the base to the tip of the arm. Since the sensor

and actuator are located at the same point, the system is minimum phase. They

concluded the inverse dynamics solution does not diverge because the RHP zeros are

relocated to the LHP by the torque transmission mechanism. Also end-point feedback

control can be stabilized for this system with simple a P-D controller. Unfortunately,

implementation of the transmission device on multi-link systems could be difficult.

In 1991, Park, Asada, and Rai [1] expanded their previous work on a minimum

phase flexible arm with a torque transmission device. In this research they integrate

structure and control design using Finite Element Analysis (FEA) to design the shape of

the arm while constraining pole and zero location. Essentially, they use the FEA

program to generate a design that will increase the fundamental natural frequency and

use the torque transmission device to eliminate the RHP zeros. A prototype of the new

system had not been tested at that point, and the main contribution was a method to

evaluate nonuniform beams for design applications.
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1.3 Proposed Method of Approach

The underlying issue in noncollocated control is how to deal with the RHP zeros

in the control algorithm. A major step in solving the problem is understanding what

design parameters can be used to change the location of these RHP zeros. This research

targets the relationship between RHP zero location and structural design. SpecificaUy,

how do changes in the shape of the structure (link) affect the location of these zeros?

Traditionally links are designed with uniform properties along the length because

analytic solutions to this problem exist. A link with variable cross-section cannot be

solved analytically, but with aid of a computer a numerical approximation can be found.

The key to an accurate numerical solution is a good model of the system.

The research presented in this thesis models a single-link flexible rotary

manipulator as a pinned-free beam. Transfer matrix theory was used to generate a beam

with variable cross-section. FORTRAN code was written to generate the model and

evaluate the system for the location of RHP zeros. The program was used to examine

the relationship between link shape and RHP zero location. This relationship can be

directly applied to controller design using the inverse dynamics approach researched here

at Georgia Tech.

The research is presented as follows.

and the method of research. Chapter 2

Chapter 1 discusses the relevant research

presents some of the characteristics of

nonminimum phase systems and some of the control methods currently used on these

systems. Chapter 3 presents transfer matrix theory, describes modeling issues of

concern to this research, and discusses computer implementation. Chapter 4 presents the

5



results pertinent to the relationship being studied. Finally, Chapter 5 presents the

conclusions and addresses areas of future research. Appendices A, B, and C contain

derivations necessary for implementation of the ZERO program. Appendix D contains

pinned-pinned natural frequencies for selected designs. Appendix E contains the source

code of the ZERO program.
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CltAIrI'ER 2

NONMINIMUM PHASE SYSTEMS

2,1 System Characteristics

As mentioned before, a system is considered nonminimum phase if there are

system zeros or poles located in the right half of the Laplace plane. Figures 2. la and

2. lb graphically express the difference between minimum phase and nonminimum phase

systems.

x

Ox 0

x

liP1

s-pLane

_e 0 x

Im

x

x

s-pLane

0 Re

Figure 2.1a: Minimum Phase Figure 2.1b: Nonminimum Phase
Pole/Zero Pattern Pole/Zero Pattern

This is the case in the continuous-time domain. In the discrete-time domain (z-

transform), the nonminimum phase zeros would lie outside the unit circle.

Often RHP zeros are called unstable zeros, but this is not good terminology.

RHP zeros do not cause the plant to go unstable. Poles in the RI-IP will cause the system
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response to exponentially increase resulting in instability, but zeros do not cause this.

It is the controller design that can cause the zeros to have an effect on system stability.

For example, when using an inverse dynamics algorithm, the RHP zeros will become

unstable poles in the inverse system. Now the controller has unstable poles which can

cause the entire system to go unstable.

A noticeable characteristic of a nonminimum phase system is the time response

to.a step input. Figure 2.2 shows the difference between minimum phase (MP) and

nonminimum phase (NMP) response of the tip position for a single-link flexible

manipulator.

t'--

Lq

o
MP

MP

Time

Figure 2.2: MP vs. NMP Time Response

Notice the tip of the NMP system initially starts to move in the direction opposite to the

command. This type of response can be verified in Park and Asada's paper [14].

It has been stated that RHP zeros are indicative of a NMP system, but what

physical phenomenon is responsible for NMP behavior? Spector and Flashner [18]

concluded that NMP behavior is an inescapable result of the finite wave propagation
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speed of elastic deformation in the structure. This wave propagation speed directly

results in a time delay between system input and the corresponding system output. The

time delay affects the system by reducing the phase margin. If the phase lag from the

time delay exceeds the system phase margin (at the cutoff frequency), the system will be

unstable.

These are some of the more prominent characteristics of nonminimum phase

systems. Of interest in this research is the control of nonminimum phase systems and

how to advance the research in this area. The following section describes some of the

current techniques used to control nonminimum phase systems.

2.2 Control of N0nminimum Phase Systems

One method of controlling a nonminimum phase system studied by Misra [12] in

1989 is augmenting a nonminimum phase plant to make the overall system minimum

phase. He used a "feedthrough" compensator so the augmented system was minimum

phase. A feedthrough compensator was added so the poles of the compensated system

move to the minimum phase zeros.

In 1987, Bayo [2] presented a structural finite element technique based on

Bernoulli-Euler beam theory for open-loop control of flexible manipulators. The

differential equations of motion are integrated in the frequency domain to determine the

necessary torques for desired tip motion. The computed torque reproduced the desired

trajectory without any overshoot, but closed-loop control was not investigated.

Another control algorithm investigated at Georgia Tech by Kwon and Book

[5] , [9] , [8] used an inverse dynamic method to deal with a NMP flexible arm. The

9



method is similar to Bayo's, only integration was carried out in the time domain. The

dynamic equations of motion for a flexible manipulator can be written as:

_,_, 4,+ o _B,

MI DI
(2.1)

where,

q_ - Pdgid body motion coordinate

cb - Flexible motion coordinate

After some manipulation the inverse dynamics equations can be obtained in the following

form:

x, : [a,]x, ,-[B,],_,,
, ..[c,]x, • [F,l__q,,

(2.2)

where,

xi = [q_,_Y qi,= [q,,_]'r

For the forward dynamic equations, the input is torque, and the outputs are all states.

For the inverse dynamics system, the input is end-point desired trajectory, and the output

is torque. The problem addressed is how to integrate these equations since the matrix

[A,] has positive real poles. The RHP poles come from the RHP zeros in the original

system. Their approach is to relax the solution range to include noncausal solutions

10



allowing a uniquestable solution of the inverse dynamic equations.

To better understand the inverse dynamics solution, some terminology needs to

be defined. According to Kwon [8], a causal system is one in which the system output

(impulse response) occurs after the system input (impulse). An anticausal system has the

output (backward impulse response) before an input is applied. A noncausal system is

a combination of both a causal system and a anticausal system.

To illustrate these concepts Figure 2.3 shows the motion of a flexible arm moving

from point A to point B.

B

4 3 _I

A

Figure 2.3: Flexible Link Motion

The two areas of interest on this curve are the start of motion and the end of motion.

Motion starts as the arm moves from position 1 to 2, but the end-point does not move.

The torque provided is applied to preshape the beam. This is the anticausal part of the

inverse solution. The torque (output of the inverse system) occurs before the end-point

(input to the inverse system) moves. When motion stops, the arm moves from position

11



3 to 4, again the end-point does not move. This represents the causal part of the inverse

solution. The tip has stopped moving, but the torque continues to be applied. The

torque applied between positions 4 and 5 is used to release the stored energy in the arm.

Since the motion can be divided into causal and anticausal parts, the solution to

Equation 2.2 can be divided into both causal and anticausal parts. Of interest to this

research is the anticausal solution. The poles of the anticausal system are unstable and

a direct result of the RHP zeros from the forward dynamic system. The ability to place

these RHP zeros would be equivalent to placing the poles of the inverse anticausal

problem. This would give the designer some freedom in choosing the location of the

anticausal poles, and allow the system to be designed for specific needs. One benefit

could be minimizing the time of preshaping and the amount of energy provided by the

actuator to preshape the beam before tip motion begins.

12



CHAPTER 3

TRANSFER MATRIX METHOD

_,1 Transfer Matrix Theory

Transfer matrices describe the interaction between two serially connected

elements. These elements can be beams, springs, rotary joints, or many others. In 1979

Book, Majette, and Ma [6] and Book [4] (1974) used transfer matrices to develop an

analysis package for flexible manipulators. They used transfer matrices to serially

connect different types of elements to model the desired manipulator. Of interest in this

paper is how to connect similar types of transfer matrices (beam elements) to model a

beam with different cross-sectional area. Pestel and Leckie [16] provide an in depth

discussion of transfer matrix derivations and applications.

Transfer matrices can be mathematically expressed by Equation 3.1.

vector ui is given by the state vector ui.t multiplied by the transfer matrix B.

The state

u,-- [B,]uH (3.1)

When elements are connected serially, the states at the interface of two elements must

be equal. By ordered multiplication of the transfer matrices, intermediate states can be

eliminated to determine the transfer matrix for the overall system.

The concept of state vector in transfer matrix theory is not to be confused with

the state space form of modern control theory. The state equation in modern control

13



theory relates the states of the system as a function of time. In transfer matrix theory

the state equation relates the states as a function of position. The independent variable

in transfer matrix theory is frequency, not time. The elements of the matrix B depend

on the system driving frequency; therefore, the states will change as the system

frequency changes. The transfer matrix B essentially contains the transformed dynamic

equations of motion that govern the element in analytic form. Therefore, analytical

solution of the transfer matrix alone does not involve numerical approximations. This

is desirable since numerical approximations introduce error into the solution.

3.2 Modelin2 of a Nonuniform Bemn

A single-rink manipulator as pictured in Figure 3.1 can be thought of as a beam

with torque applied at one end and free at the other end. There are several steps to

determine the RHP zeros and imaginary poles of this system. First, develop a model for

the beam. Second, determine the appropriate boundary conditions. Third, determine the

system input and output. Forth, solve for the system zeros. The following sections will

discuss each of these steps in more detail.

Y

I

x

Figure 3.1: Single-Link, Flexible Manipulator
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_.2.1 Element Approach to Modeling

A link with nonuniform cross-sections can be modeled as a series of discrete

elements. While the shape of these elements is similar, the size can vary to allow for

changes in cross-section. The appropriate element to model a flexible link is an Euler-

BernouUi beam element. The Euler-Bernoulli model neglects the effects of rotary inertia

and shear deformation in the element. [11]. This assumption is generally valid for

modeling beams whose length is roughly ten times the height. Flexible manipulators

have long, slender links which are appropriately modeled under the Euler-Bemoulli

assumption.

Transfer matrices are derived from the equation of motion for a given element.

For a uniform Euler-Bernoulli beam element, the equation of motion transformed to the

frequency domain has the form:

d4w(x'_°) - 1++_2w(x,_)
dx 4 E1

where,

t,O -"

E --
I =

mass density per unit length
frequency in radians/second

Young's modulus
Cross sectional area moment of inertia

Notice the equation is fourth order thus requiring four states to describe the solution in

transfer matrix form. The state vector for the Euler-Bernoulli element is:

15



--I sLo_

[ shear force

(3.3)

The first two elements of the state vector are displacements (w and 4) while the last two

elements are forces (V and M). This arrangement of states is characteristic of t/ansfer

matrix theory. Figure 3.2 shows how these are defined for transfer matrix theory.

M i_/_ _'

VI- I w_ I_1

M,_.T__,_I ._ v,

ix
W I

L

Z

Figure 3.2: State Variables and Sign Conventions

An analytic solution to Equation 3.2 can be found when the element has uniform

properties (ie. constant cross-section, mass density, and stiffness). Equation 3.4 gives

the transfer matrix for a uniform Euler-BernouUi element. Each element of Equation 3.4

is a function of frequency and must be reevaluated as the frequency of interest changes.

16



gg

G tq aq arc;

--7p_C3 Co -TaG aC2

P'q P'/G
a a

C O lC_

q
al a 1

(3.4)

where,

Co ,, _(=,_13 + cosl_) (3.5)

C, -- _(sinh_ + sial3) (3.6)

C2 = _-;p:(coshl3 - cosl3) (3.7)

c 3 = _;p,(sinh_ - sin_) (3.8)

and

l 2
I_4 - t_2141_ (3.9) a - (3.10)

E1 E1

With the transfer matrix for the fundamental beam elements, one can combine

these elements serially to generate a model for the link. Figure 3.3 illustrates how a

simple model can be constructed for a tapered beam. Although only two dements are

considered here, more elements can be added to better approximate the shape of the link.

17



0 1 2

A

Figure 3.3: Simple Model of a Tapered Beam

Element A can be represented by the equation:

uz = [Bl]Uo (3.11)

Similarly for element B,

--[B,].,

Since the states at interface ut are the same for both elements, u_ can be eliminated to

obtain an overall transfer matrix for the beam:

u2 = [B2][B,]u o (3.13)

Eliminating one state simply illustrates the point that this multiplication can be carried

out to eliminate all intermediate states in a model with more elements.

As previously mentioned, transfer matrices themselves are not numerical

approximations. The transfer matrix for a Euler-Bernoulli beam contains the analytic

solution for a uniform beam element. It is not an assumed modes solution. The

approximation made in using transfer matrix theory involves the modeling of the beam

and solution of the equations. To generate the model of a link with variable cross-

18



section, the size of the elements must vary. The interface of two different size elements

will be discontinuous. In Figure 3.3, interface 1 is discontinuous between elements A

and B. These discontinuities are the major approximation when using transfer matrices

to model a beam. This approximation can be minimized by using more elements to

model a nonuniform beam. As more elements are added to the model, the discontinuities

between elements will decrease thus reducing the effects of this approximation on the

results.

Transfer matrix theory is similar to Finite Element Analysis (FEA). In FEA, first

the system must be discretized. Then an appropriate interpolation function must be

selected to describe each element (ie. element stiffness). Next the system matrices must

be assembled to produce a set of linear algebraic equations. Finally the linear equations

are solved to get an approximate solution to the system under consideration.

Like FEA, when using transfer matrices the-system must be first discretized into

a finite number of elements. Unlike FEA though, there is no approximate interpolation

function needed to describe each element. Each matrix contains the analytic equations

describing the element. The two methods also differ in the method of solution of the

numerical system of equations (for this application). As will be explained later, a root

finder is used to determine the location of poles and zeros. An equation is extracted

from the overall transfer matrix based on the desired input and output and the boundary

conditions. The root finder then searches this equation to determine the location of poles

and zeros. Although both are numerical methods to find an approximate solution to a

continuous system, transfer matrix theory does reduce some approximations by using

19



exact solutions to the partial differential equations to describe the individual elements.

3.2,2 Boundary_ Conditions

The second step in finding the RHP zeros and imaginary poles of a system is

applying the appropriate boundary conditions. As Figure 3.4 shows, there are several

boundary conditions that can be applied to model a flexible link. The clamped-free

condition corresponds to a rigid coordinate attached at the hub. The pinned-pinned

condition corresponds to a rigid coordinate which passes through the end-point of the

manipulator. In this research, the pinned-free boundary condition was chosen to model

the flexible link. This corresponds to a rigid coordinate passing through the center of

mass of the beam. This boundary condition was chosen because it naturally describes

a flexible link and previous research by Spector and Flashner [18],[19] also used these

boundary conditions tO model the flexible link.

|7

Y

claMped-?ree

/ plnned-_ree

plnned-plnned

_ X

Figure 3.4: Boundary Conditions for a Flexible Link
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A pinned-free boundary condition implies that:

At x-0 (base): w=0 M=0 (pinned)

At x-L (tip): V=0 M-0 (free)

These boundary conditions are applied to the overall transfer matrix for the system and

the appropriate state variables are set to zero.

o* : :o*
0 1"" B',,J

(3.14)

3.2.3 System Input and Ou_tput

When the system zeros are of interest, one must chose the system input and

output. Unlike the natural frequency calculation Which depends only on the boundary

conditions, the location of system zeros will change as the input/output relationship

changes. To illustrate this point, consider a single-link flexible manipulator modeled as

a continuous system. Figure 3.5 shows the pole zero pattern of two different

input/output relationships for the same system. Figure 3.5.a shows the transfer function

between the joint angle, 0(s), and joint torque, r(s), to be minimum phase. This is

expected since these two are collocated. Figure 3.5.b shows the transfer function

between tip position, X(s), and joint torque, T(s), to be nonminimum phase. The RI-IP

zeros are a result of the noncollocated output relationship. Since this research targets the

location of RHP zeros the system output is tip position, and the system input is joint
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a: For #(s)/r(s) Transfer Function b: For X(s)/r(s) Transfer Function

Figure 3.5: Pole/Zero Patterns For Different Input/Output Relationships

torque. Considering the system input and output, the overall system transfer matrix will

have the form:

0 x-L 1 x-O

(3.15)

In the above equation, WL is the system output which corresponds to tip position, and r

is the system input corresponding to joint torque at the base of the manipulator.

_.2.4 Zero Function

With the system input and output chosen, Equation 3.15 can be simplified to

determine the function that relates system output to system input. Appendix B contains

a complete derivation of the zeros function for the system under consideration. The
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equationusedto determinezero location is:

BnB44B33 - BnBsB43 + BI3B34B42 - B13B44B32 ÷ B_4B43B32 - B_4B33B421w, -- - n34n n.,nn J
(3.16)

Where Bu are elements of the overall transfer matrix in Equation 3.15. When the

function inside the brackets is zero (for a given frequency), the output will always be

zero regardless of the input; therefore, the zeros of the bracketed term are the system

zeros. As derived in Appendix A, this function is real.

BI2B44B33- BI_B34B43+ BI3Bs4B42- Bx3B44B32+ BI4B43B32- Bx4B33B42

f(co) = B34B42 _ B44B32

(3.17)

To search for RHP zeros, one must consider what type of frequency to input into

Equation (3.17). Using the relationship which defines the Laplace variable, s

S =ju} (3.18)

one can easily determine o0should have the form:

= 0 - jb where O<b<** (3.19)

Purely imaginary negative values of o_ will result in purely real positive values of s.
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Thus searching Equation 3.17 with frequencies of the form of Equation 3.19 one can find

the location of the RHP zeros.

3.2.5 Natural Frequency Function

Although the location of RHP zeros is of primary concern in this research,

knowledge of pole location will help in analysis of the results. Since the system da_nping

is ignored, the poles will lie on the imaginary axis of the s-plane in complex conjugate

pairs. The location of these poles can be determined by simply searching the positive

imaginary axis of the s-plane. Considering the applied boundary conditions, one can

extract two homogeneous equations from Equation 3.14 to get the homogeneous system:

(3.20)

The poles (eigenvalues) of the system are those values of _owhich make the determinant

of the sub-transfer matrix in Equation 3.20 equal to zero (see reference [6] for a detailed

explanation). For a two by two matrix this determinant is simply:

(3.21)

Referring to Equation 3.18, one finds that Equation 3.21 is the denominator of the

input/output transfer function which is to be expected. To find the values of the purely

complex poles, one must search Equation 3.21 for its roots. According to the definition
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of s, _ must have the form:

- b ÷ jo (3.22)

Searching over a range of values for b will give the poles in that range. With the zero

and natural frequency functions determined, the problem remains to implem.ent a

computer solution to fred the RHP zeros and imaginary poles.

3.3 Computer Implementation

Like Finite Element Analysis, the solution to pole/zero location of a flexible link

using transfer matrix theory is computationally intensive. As the number of elements in

the model increases, so does the number of computations. With the availability of

computers today, the problem is fairly easy to solve if the proper algorithm can be

implemented. Previous research by Book and others [6],[10] used transfer matrices to

model systems and this provided some insight on how to realize a computer solution

using transfer matrices, especially the DSAP [6] package. The program structures are

purposely similar to aid in combining the programs for future research.

The code is written in FORTRAN (FORmula TRANslation) language as this

language is well suited for solving scientific and engineering problems. A Digital

VaxStation 1I was used to run the FORTRAN software. Vax FORTRAN is very

compatible with FORTRAN 77, a popular ANSI standard version. The previous

research by Book and others was also written in FORTRAN.
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Program ZERO is the main module which handles control of the other

subroutines. Figure 3.6 presents a flow chart for the ZERO program showing how the

different subroutines are employed, and Table 3.1 describes the function of each program

module. Each subroutines was designed to accomplish a specific task simplifying the

programming job. The following is a quick overview of the program structure.

Once the model and computation parameters are input, the main search interval

is divided into subintervals. Each subinterval is sent to the root finder, ZFALSE,

individually and ZFAI_E checks for roots. ZFALSE calls function F to evaluate the

zero or pole function for a given frequency.

overall transfer matrix for the given frequency.

To evaluate the function, F needs the

Function F calls subroutine BUILD to

generate the overall transfer matrix. Subroutine BUILD first calls subroutine BEAM4

to generate the transfer matrix for the i*aelement. Once BEAM4 returns the element

transfer matrix, BUILD calls subroutine MUL to multiply the updated overall transfer

matrix with the new element transfer matrix. BUILD repeatedly calls BEAM4 and MUL

until the all intermediate states are eliminated. Once BUILD returns the overall transfer

matrix to F, F evaluates the appropriate function and returns the value to ZFALSE. This

entire process is repeated each time ZFALSE needs the function value for a particular

frequency. After SUBDIV outputs the results from ZFALSE, it continues to send down

the next subinterval until the entire frequency range has been searched. Appendix E

contains the source code of the main program and all subroutines for reference if needed.

The following sections will discuss each unit in more detail.
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Table 3.1: Program Modules and Their Functions

Module I

ZERO

SUBDIV

Function

1. Input system model

MUL

1. Input computation parameters

2. Input search interval
3. Divide search interval into subintervals

ZFALSE 1. Regula-falsi root finder

F 1. Generate complex frequency

a. [O,-b] for zeros

b. [ + b,O] for poles
Evaluate function.

BUILD 1. Generate overall transfer matrix

BEAM4 1. Generate element transfer matrix

2. Extract real matrix

1. Multiply two square matrices

Figure 3.6:

MUL

I ZERO t

SUB]_IV

I ZFALSE

I '-

I BUILD

J L  EAM4

ZERO Program Organization
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3.3.1 Main Program

The main program module ZERO handled control of the subroutines and user

interface for entering the model. The model is entered as elements with each element

needing 5 parameters to describe it. The first element corresponds to the base element

while the last element corresponded to the tip element. For each element the five

parameters are stored in a two dimensional array, EP, in the following order:

EP(1,Ei). =

EP(2,E0 =

EP(3,F.0 =

EP(4,E0 =

EP(5,E0. =

Element length (in)

Element mass per unit length (in2-1b-sec 2)

Element area moment of inertia (in 4)

Element modulus of elasticity (psi)

Element damping factor

Ei in the second index of array EP, corresponds to the i_ element of the model. The

units in parentheses are only one choice; otherscan be used as long as they are

consistent. The model can be entered into the program from the keyboard or through

an input file. Input files must have the extension ".inp _ to be recognized by the

program. It should be noted that the damping factor must be zero for this program. It

is included as a dummy parameter to maintain similarities with the program DSAP.

Once the model is entered in, ZERO passes control on to the subroutine SUBDIV.

3.3.2 Subroutines

With the model entered, subroutine SUBDIV handles input of the computation

parameters for the root finder, input of the frequency range, and output of the results.
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The computation parameters eps, nsig, and itmax are discussed under ZFALSE. Along

with the frequency range, the user inputs the number of subdivisions. SUBDIV sends

one subdivision at a time down to ZFALSE to check for roots. The results of the search

in each subinterval are printed to the screen. The possibilities are: a) a root was found,

b) no root was found, or e) the program did not converge. In addition to screen output,

SUBDIV generates two output files. The output file with extension ".out', contains the

location of all computed zeros and poles. This allows the user to get a hardcopy of the

results. The output file with extension ".dat" contains the values of the function being

searched (zero function or natural frequency function) at each interval. This allows the

user to examine the function values for more information if needed.

Since the damping factor is zero, the poles and zeros are a priori known not to

have both real and complex parts. The nonminimum phase zeros will lie on the positive

real axis, and the poles will lie on the imaginary axis in complex conjugate pairs.

Although the two do not lie on the same axis, a two-dimensional search can be avoided

by performing two one-dimensional searches along both axes. This is accomplished by

changing the form of the frequency (ie. purely complex or real). SUBDIV prompts the

user first for the frequency range and number of subdivisions for the zeros search. Once

this is completed, SUBDIV prompts the user for the frequency range and number of

subdivisions for the poles search. Both searches use the same computation parameters.

Subroutine ZFALSE determines whether or not a root lies within the specified

subinterval. It first checks the values passed down defining the subinterval. If these
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have the same sign, then it assumes no root lies in the subinterval and passes the

appropriate flag back to SUBDIV. If the signs are opposite, then it begins to iterate in

on the suspected root. The estimation of the root is determin_l by the Regula-Falsi

method as illustrated in Figure 3.7. Using the two values that define the subinterval, xR

and XL, it linearly interpolates for the first estimate of the root and determines the

function value at the new estimate. The estimate is judged to be a root if it passes one

of two criteria. Criteria 1 tests the magnitude of the function at the estimated root, x_.

IF x_ _ eps then x_ is a root;, therefore, eps is the numerical value of "zero" input by

the user. Criteria 2 tests the number of significant digits which do not change from one

estimation to the next. If ]x_-x_o_l _ 10"_'_) then x_ is a root; therefore, nsig stores

the number of significant digits of the root. If neither of these tests are passed before

the maximum number of iterations, itmax, is reached, then ZFALSE returns with an

appropriate message. _

ZFALSE calls the subprogram F to evaluate the function at the given frequency.

The frequency passed to F is a real number and based on the type of search (zero or

pole), F will generate the proper complex frequency. It next calls BUILD to assemble

the overall transfer matrix for that frequency. With the overall transfer matrix, F

evaluates the proper function and returns the value to ZFALSE. F knows which function

(zero or pole) to use based on a flag set in SUBDIV.

3O



y=f'Cx)

///'///__I I

X,',/ / !
x, / !
9 .I r f / -
I ill i, ! x,
I i I I/

_x

Figure 3.7: Regula-Falsi Method

The subroutine BUILD generates the overall transfer matrix for a given

frequency. For each element in the model, BUILD calls subroutine BEAM4 to generate

the transfer matrix for that element. When BEAM4 returns with the element transfer

matrix, BUILD calls subroutine MUL to update the overall transfer matrix by

premultiplying the current overall transfer matrix by the new element transfer matrix.

BUILD repeatedly calls BEAM4 and MUL until the overall transfer matrix is complete.

As mentioned, subroutine BEAM4 generates the element transfer matrix for a

given frequency. It implements Equation 3.4 given the element parameters passed down

from program ZERO in an array. Since the frequency wiU be complex, all computations

to generate the element transfer matrix are carried out using complex calculations. As

Appendix A shows, the resulting transfer matrix will have all imaginary parts identically
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zero. BeforeBEAM4 returnsthe element transfer matrix, it extracts the real part of each

term to generate a real element transfer matrix. This real element transfer matrix is

passed back to BUILD. By extracting the real elements in BEAM4, all other subroutines

can avoid having to do complex calculations. With this review of the program structure,

the following section presents a sample run of the program ZERO.

3.3.3 Sample Run of Program ZERO

The sample run includes the screen output and keyboard input as presented to the

user. Also included is the input file which contains the element parameters for the

model. The fast output file (extension: .out) contains a summary of pole and zero

location, while the second output file (extension: .dat) contains the pole and zero function

values at each subinterval. The file selected has nominal properties with Affi0.75 inches

and B = 0.25 inches. -
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THIS PROGRAM DETERMINES THE LOCATION OF ZEROS

AND POLES FOR A BEAM USING TRANSFER MATRIX THEORY.

WOULD YOU LIKE TO ENTER THE MODEL INFORMATION

MANUALLY OR THRU AN INPUT FILE?

1 FOR MANUAL, 2 FOR FILE, 3 FOR INPUT DESCRIPTION

3

MODELING PARAMETERS:

NE- NUMBER OF ELEMENTS IN THE MODEL

L- LENGTH OF ELEMENTS

MPL- MASS PER UNIT LENTGH OF ELEMENT

AMI- AREA MOMENT OF INERTIA OF ELEMENT

E- YOUNGS MODULUS OF ELEMENT

DF- DAMPING FACTOR OF ELEMENT(MUST BE ZERO FOR

THIS PROGRAR)

TYPE: I FOR KEYBOARD INPUT, 2 FOR FILE INPUT

2

THE INPUT FILE MUST HAVE EXTENSION ".INP"

AND LINES 1-5 ARE RESERVED FOR COMMENT

WHAT IS THE FILE NAME, WITHOUT EXTENSION, WITHIN APOSTROPHES

[.TAPER]TAPB3

WOULD YOU LIKE DEFINITIONS OF THE COMPUTATION PARAMETERS?

1 FOR YES, 2 FOR NO

1

COMPUTATION PARAMETERS IN ORDER OF INPUT:

EPSILON- FIRST CONVERGENCE CRITERION. A TRIAL

ROOT, X, IS ACCEPTED IF ABS[F(X)}<EPS

NSIG- SECOND CONVERGENCE CRITERION. A TRIAL

ROOT, X, IS ACCEPTED IF IT AGREES WITH

THE PREVIOUS TRIAL VALUE TO NSIG SIGNI-

FICANT DIGITS.

ITMAX- THE MAXIMUM NUMBER OF ITERATIONS PER

SUBINTERVAL

LOW- THE LOWER BOUND OF THE SEARCH INTERVAL

HIGH- THE UPPER BOUND OF THE SEARCH INTERVAL

NDIV1 THE NUMBER OF SUBDIVISIONS IN THE MAIN

SEARCH INTERVAL [LOW,HIGH]

INPUT EPS,NSIG,ITMAX

1.0000000000000000E-20 10 50

INPUT LOW,HIGH,NDIV FOR ZEROS

1.000000000000000 400.0000000000000 40

ZEROS

SEARCH INTERVAL RESULT

1.00 TO 10.98 NO ZERO
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lU._a TO 20.95 ZERO AT

20.95 TO 30.93 NO ZERO
30.93 TO 40.90 NO ZERO

40.90 TO 50.88 NO ZERO
50.88 TO 60.85 ZERO AT

60.65 TO 70.83 NO ZERO

70.83 TO 80.80 NO ZERO

80.80 TO 90.78 NO ZERO

90.76 TO 100.75 NO ZERO

100.75 TO 110.72 NO ZERO

110.72 TO 120.70 NO ZERO

120.70 TO 130.68 NO ZERO

130.68 TO 140.65 ZERO AT

140.65 TO 150.63 NO ZERO

150.63 TO 160.60 NO ZERO

160.60 TO 170.58 NO ZERO

170.58 TO 180.55 NO ZERO

180.55 TO 190.53 NO ZERO

190.53 TO 200.50 NO ZERO

200.50 TO 210.48 NO ZERO

210.48 TO 220.45 NO ZERO

220.45 TO 230.43 NO ZERO

230.43 TO 240.40 NO ZERO

240.40 TO 250.38 ZERO AT

250.38 TO 260.35 NO ZERO

260.35 TO 270.33 NO ZERO

270.33 TO 280.30 NO ZERO

280.30 TO 290.28 NO ZERO

290.28 TO 300.25 NO ZERO

300.25 TO 310.23 NO ZERO

310.23 TO 320.20 NO ZERO

320.20 TO 330.18 NO ZERO

330.18 TO 340.15 NO ZERO

340.15 TO 350.13 NO ZERO

350.13 TO 360.10 NO ZERO

360.10 TO 370.08 NO ZERO

370.08 TO 380.05 NO ZERO

380.05 TO 390.03 ZERO AT

390.03 TO 400.00 NO ZERO

13.644

56.616

133.016

243.353

388.194

INPUT LOW,HIGHoNDIV FOR POLES

1.000000000000000 300.0000000000000 40

SEARCH INTERVAL

POLES

RESULT

1.00 TO 8.48 NO POLE

8.48 TO 15.95 POLE AT

15.95 TO 23.43 NO POLE

23.43 TO 30.90 NO POLE

30.90 TO 38.38 NO POLE

38.38 TO 45.85 NO POLE

45.85 TO 53.32 POLE AT

53.32 TO 60.80 NO POLE

60.80 TO 68.27 NO POLE

68.27 TO 75o75 NO POLE

75.75 TO 83.22 NO POLE

83.22 TO 90.70 NO POLE

90.70 TO 98.17 POLE AT

98.17 TO 105.85 NO POLE

105.65 TO 113.12 NO POLE

113.12 TO 120.60 NO POLE

120.60 TO 128.07 NO POLE

15.890

46.034

92.904

34



128.07
135.55

143.02
150.50

157.98
165.45

172.93

180.40
187.88

195.35
202.83

210.30
217.78

225.25

232.73
240.20

247.68
255.15

262.63

270.10

277.58

285.05
292.53

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

135.55

143.02

150.50

157.98

165.45

172.93

180.40

187.88

195.35

202.83
210.30

217.78

225.25

232.73

240.20

247.68

255.15

262.63

270.10

277.58

285.05

292.53
300.00

NO POLE

NO POLE

NO POLE

POLE AT

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

POLE AT

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

NO POLE

156.637

237.385
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INPUT FILE: TAPB3

NE
E L

8nmlmanenmnmm

I0
0.222222D÷01
0. 444444D+01
0.444444D+01
0. 444444D+01
0.4444441>4"01
0. 444444D+01
0. 444444D+01
0.444444D+01
0.444444D÷01
O. 2222220÷01

MPL
mmmmmmmmm

0.716250D-01
0.663194D-01
0.610139D-01
0.557083D-01
0.504028D-01
0.450972D-01
0.397917D-01
0.344861D-01
0.291806D-01
0.238750D-01

I
mmmmmmmmm

0.351563D-01
0.279082D-01
0.217318D001
0.165413D-01
0.122510D-01
0.877522D-02
0.602816D-02
0.392411D-02
0.237733D-02
0.130208D-02

0.100000D÷08
0.100000D+08
0.100000D+08
0.100000D+08
0.100000D+08
0.100000D+08
0.100000D÷08
0.100000D+08
0.100000D÷08
0.100000D÷08

DF
mmem

0.0D÷00
0.0D+00
0.0D+00
0.0D÷00
0.0D÷00
0.0D÷00
0.0D+00
O.OD÷O0
0.0D+00
0.0D+00
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CALCULATION PARAMETERS :

EPS- 0.100E-19
NSIG- 10

ITMAX- 50

NE- 10

RESULT

ZERO AT

ZERO AT

ZERO AT

ZERO AT

ZERO AT

13.644

56.616

133.016

243.353

388.195

POLE

POLE

POLE

POLE

POLE

AT

AT

AT

AT

AT

15.890

46.034

92.904

156.637

237.385

[.TAPER]TAPB3
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FILE: |.TAPERJTAPD3

ZEROS
XLL XRR FXL FXR

1.00 TO 10.98
10.98 TO 20.95
20.95 TO 30.93
30.93 TO 40.90
40.90 TO 50.88
50.88 TO 60.85
60.85 TO 70.83
70.83 TO 80.80
80.80 TO 90.78
90.78 TO 100.75

100.75 TO 110.72
110.72 TO 120.70
120.70 TO 130.68
130.68 TO 140.65
140.65 TO 150.63
150.63 TO 160.60
160.60 TO 170.58
170.58 TO 180.55
180.55 TO 190.53
190.53 TO 200.50
200.50 TO 210.48
210.48 TO 220.45
220.45 TO 230.43
230.43 TO 240.40
240.40 TO 250.38
250.38 TO 260.35
260.35 TO 270.33
270.33 TO 280.30
280.30 TO 290.28
290.28 TO 300.25
300.25 TO 310.23
310.23 TO 320.20
320.20 TO 330.18
330.18 TO 340.15
340.15 TO 350.13
350.13 TO 360.10
360.10 TO 370.08
370.08 TO 380.05
380.05 TO 390.03
390.03 TO 400.00

0.51926-01 0.91596-04
ZERO: F- 0.33496-14

-0.37426-04 -0.17536-04
-0.1753E-04 -0.55206-05
-0.5520Z-05 -0.99226-06

ZERO: F- -0.39186-18
0.3547E-06 0.57076-06
0.5707E-06 0.45796-06
0.45796-06 0.2963E-06
0.29636-06 0.16676-06
0.16676-06 0.80956-07
0.80956-07 0.30466-07
0.3046E-07 0.3853E-08
ZERO: F- 0.23246-16

-0.82026-08 -0.1213E-07
-0.1213E-07 -0.1197E-07
-0.1197E-07 -0.10076-07
-0.I0076-07 -0.76876-08
-0.76876-08 -0.5450E-08
-0.54506-08 -0.3601Z-08
-0.3601E-08 -0.2194E-08
-0.2194E-08 -0.I1896-08
-0.11896-08 -0.51346-09
-0.51346-09 -0.88366-10

ZERO: F- 0.0000E*00
0.15636-09 0.2776E-09
0.27766-09 0.31936-09
0.31936-09 0.31306-09
0.31306-09 0.2806E-09
0.28066-09 0.23666-09
0.23666-09 0.1900Z-09
0.19006-09 0.1462E-09
0.14626-09 _ 0.10786-09
0.10786-09 0.75806-10
0.75806-I0 0.50286-I0
0.50286-10 0.30676-10
0.30676-10 0.16176-10
0.16176-10 0.58796-11

ZERO: F- 0.0000E+00
-0.I0586-II -0.54226-II

POLES
XLL XRR FXL FXR

1.00 TO 8.48
8.48 TO 15.95

15.95 TO 23.43
23.43 TO 30.90
30.90 TO 38.38
38.38 TO 45.85
45.85 TO 53.32
53.32 TO 60.80
60.80 TO 68.27
68.27 TO 75.75
75.75 TO 83.22
83.22 TO 90.70
90.70 TO 98.17
98.17 TO 105.65

105.65 TO 113.12
113.12 TO 120.60

-0.75896÷03 -0.37326÷05
POLE: F- 0.29106-10

0.12266+04 0.32556+06
0.32556÷06 0.91396÷06
0.9139Z+06 0.i214E+07
0.12146÷07 0.5942E+05
POLE: F- 0.0000E+00

-0.40016÷07 -0.11896+08
-0.11896+08 -0.2276E÷08
-0.22766÷08 -0.32626÷08
-0.32626+08 -0.3333E+08
-0.3333E÷08 -0.1246E÷08

POLE: F- 0.1526E-04
0.4507E÷08 0.1533E÷09
0.15336÷09 0.3189E÷09
0.3189E+09 0.5329E+09
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120.60
128.07
135.55
143.02
150.50
157.98
165.45
172.93
180.40
187.88
195.35
202.83
210.30
217.78
225.25
232.73
240.20
247.68
255.15
262.63
270.10
277.58
285.05
292.53

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

128.07
135.55
143.02
150.50
157.98
165.45
172.93
180.40
187.88
195.35
202.83
210.30
217.78
225.25
232.73
240.20
247.68
255.15
262.63
270.10
277.58
285.05
292.53
300.00

0.5329E+09
0.7610E+09
0.9336Z÷09
0.9399E+09
POLE: P_

-0.1928E+09
-0.1717E+10
-0.4118E+10
-0.7485E+10
-0.1175E+11
-0.1662Z+11
-0.2144E+11
-0.2516E+11
-0.2622E+11
-0.2258Z+11

POLE: Fm
0.9266E+10
0.4325E+11
0.9285E+11
0.1598E+12
0.2443E+12
0.3440E+12
0.4531E+12
0.5617E+12

0.7610E÷09
0.9336E÷09
0.9399E+09
0.6267E+09

O.O000Z+O0
-0.1717E+10
-0.4118E+10
-0.7485E+10
-0.1175E+11
-0.1662E+11
-0.2144E+11
-0.2516E+11
-0.2622E+11
-0.2258E+11
-0.1170E+11

0.0000E+00
0.4325E+11
0.9285E+11
0.1598E+12
0.2443E+12
0.3440E+12
0.4531E+12
0.5617E+12
0.6540E+12
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CHAPrER 4

RESULTS

The results of the zero and pole locations found from program ZERO are

presented in this chapter as a collection of studies. Each study investigates a different

aspect of the relationship between RHP zero location and structural link design. As

mentioned previously, pole location is often of interest to the designer, so this

information is presented for each study. Unless otherwise specified, several dimensions

remain the same from one study to the next (referred to as nominal dimensions). The

overall length of the beams is 40 inches, and the height (which remains constant over

length) is 1 inch. The material properties are selected to be those of aluminum: modulus

of elasticity, E, is 10E6 psi, and the density is 9.55E-2 lb/in 3.

4,1 Validity of Results

Before examining the relationship between RHP zeros and link design, the validity

of the computer algorithm to determine zero/pole location must first be checked. Since

analytic solutions exist for the location of poles for a uniform beam, the results from

ZERO were compared to the analytic solution to determine the accuracy of the program.

The vibrations text by Rao [17] contains the analytic solution for pole location of a

pinned-free beam under lateral vibration. The poles were determined from the following
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equation:

(4.1)

For a pinned-free beam, the values of 8,1 are:

8,1 = 3.926602

821 = 7.068583

8sl = 10.210176

For a uniform beam with width=0.5 inches and nominal properties as given above, the

pole locations are presented in Table 4.1 along with the results from program ZERO.

Table 4.1: ZERO Program vs. Analytical Solution

Pole Program
ZERO

14.23

2 46.12

3 96.23

Analytical
Solution

14.23

46.12

96.23

The results generated from program ZERO show excellent correspondence to the analytic

values. However analytic calculation of zeros is not as simple of a task since the

boundary conditions are no longer homogeneous, and texts lack tabulated results. The
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same method was used to calculate poles and zeros, only a different function was used.

It must be noted that the results presented in this chapter will not include the two

poles lying at the origin. These poles are a result of the rigid body mode of the system.

Keep in mind the location of the poles will be presented in tabular form as a real

number, but they actually are located on the s-plane in complex conjugate pairs along the

imaginary axis. The zeros are also presented in tabular form as real numbers, and they

lie on the real axis as reflected pairs about the imaginary axis. This means for every

RHP zero found, there was a corresponding LHP zero equal in magnitude but opposite

in sign. The symmetry of the s-plane results from ignoring the damping of the structure

in the Euler-Bernoulli model and was confirmed by Spector and Flashner [18].

4,2 Efffgt_ of Disfretization

When modeling a continuous system with a discrete model, one should check to

make sure the discretization of the model does n°t affect the results. This was easily

confirmed by studying a uniform beam. Using transfer matrices, a uniform beam can

be modeled with one element or several elements. Table 4.2 shows the results of

program ZERO for a uniform beam modeled with 1 element and 20 elements. The beam

had nominal properties with W=0.5 inches. Notice the results were identical for both

the poles and zeros as one would expect. For a tapered beam, the number of elements

will be more critical because increasing the elements will decrease the discontinuities at

each element interface. For nonuniform designs, the poles and zeros should converge

to the actual values as the number of elements increases. This will be confirmed later

in the chapter.
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Table 4.2: Effects of Discretization

Zcro

Pole

2

3

4

5

10.33

14.23

55.80

46.12

137.8

96.23

411.1

251.1

NE-20

10.33
14.23

55.80

46.12

137.8

96.23

411.1

251.1

4,3 Modeline of a Tapered Beam

Another point to consider in the computer implementation of the RHP zeros

problem was how well does the model represent the actual system. Although the model

was limited to uniform elements, there were any number of combinations one can find

to represent the system. This study examined two different methods for modeling a

lineaxly tapered beam. As shown in Figure 4.1 the link was tapered along the length in

the width dimension while the height was held constant. The taper was described by two

dimensions: the width at the base, A, and the width at the tip, B. The degree of taper,

R =A/B, was used to compare different designs.
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T
A I

Z

X

Figure 4.1: Tapered Link Diagram

Using Method 1 to model the tapered link, the beam was divided into dements

of equal length. For a three dement model with length L, each element will have length

L/3. The height of each element was the same, while the width of each element changed

linearly as a function of x. Figure 4.2 presents modeling Method 1.

]3

,?°-L/3 _ L/3 _L/3-_

z

Figure 4.2: Modeling Method 1

Using Method 2 to model the tapered link, the beam was divided into elements

so the first and last element have length one-half of the intermediate elements. For a

three element model with length L, the first and last elements will have length L/4 and

the middle dement will have length L/2. Again the height of each element was the
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same, while the width of each element changed linearly as a function of x.

presents modeling Method 2.

Figure 4.3

A I

___.
Z

B

Figure 4.3: Modeling Method 2

Figures 4.2 and 4.3 illustrate the main difference between the two modeling

methods. Method 2 compensated the elements at each end for meeting the specified end

widths A and B. In both methods the width of intermediate elements was determined by

the width of the tapered beam at the midpoint of each element. Since the end elements

meet the specified A and B, the tapered link will not pass through the midpoint of these

two elements. Method 2 compensates for this exception by making the end element

lengths one half the length of the other elements.

To compare these two different modeling methods for a linearly tapered beam,

a beam with nominal dimensions and A-0.75 inches and B-0.25 inches was studied.

This corresponds to R=3. The number of elements was increased with each method

until the zeros and poles converged. Table 4.3 presents the results from Method 1 where

all elements were of equal length, and Table 4.4 presents the results from Method 2

where the end elements were half the length of all other elements. Although only two
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methods are considered in this research, there are many different ways to discretize a

nonuniform link.

The two methods were evaluated based on an error function. When the tapered

beam was modeled with 80 elements, both methods converged to nearly identical values

for the poles and zeros. These values, when NE=80, were taken to be the "correct'

values and other cases were compared to this case. The error, e, was defined for the

zeros as:

(4.2)

where i refers to the i'_ zero

A similar definition was used for the poles. The value of e at the top of each column

represents the maximum of all individual errors in each column. As the tables show,

Method 2 provided better results for the same number of elements. In each table, one

column was shaded to distinguish it as the number of elements needed to get the error

under 1%. For Method 2, this column corresponded to NE= 10 as opposed to NE=20

for Method 1. Thus, compensating the end elements did provide a better model of a

linearly tapered beam, and this method was used in the following studies unless specified

otherwise. Both tables also show that the convergence of poles and zeros as the number

of the number of elements was increased.
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Table 4.3: Results From Method 1

Zero NEffi3 NE=5 NEff 10

Pole (e<209t) (e<8.6%) (e,: 1.9%)

1 13.91 13.99 13.73

13.64 15.95 16.05

2 45.57 55.99 57.28
38.08 43.24 46.19

3 121.2 122.0 134.2

88.16 85.31 92.52

4 210.8 223.2 242.9

137.5 147.5 154.9

5 357.8 383.8 382.1
219.5 234.7 233.3

?!(eS0;3_)!

iiii_!!!_i!ii!13i!691iiiiii:ii!

i_ii!!ii;iiii!lSi96:ii!i!i;)il

iiii!iiiiiiii$6i91i;ii;iii:

NE-40 NE-80

(e,_0.1%)

13.68 13.68
15.92 15.91

56.84 56.83

46.14 46.11

133.6 133.5

93.13 93.09

244.2 244.I

157.0 157.0

388.9 388.7

237.7 237.9 237.8

Table 4.4: ResultsFrom Method 2

Zero NE=3 NE=5 NEll0 NE=20 NE=40 NE=80

Pole (e < 16 %) (e <4.0%) (e <0.4 %) (e <0.1%) (e <0.0%)

1 13.09 13.49 13.64
15.57 15.82 15,89

2 53.77 56.12 56,62
38.66 45.82 46.03

13.67 13.68 13.68

15.90 15.91 15.91

56.78 56.82 56.83

46.09 46.10 46.10
:::: i :¸¸:::. i: :

3 120.4 135.1 :i !33,0

85.88 93.17 92,90

4 233.6 234.7 243.4
154.4 148.3

133.4 133.5 133.5

93.03 93.06 93.06

243.9 244.1 244.1

156.9 156.9 156.9

5 360.6 384.6 _i388,2 :i

220.3 231.1 237_4_ _

388.3 388.6 388.6

237.7 237.7 237.8
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4.4 Linear Taper Designs

When comparing different link designs to evaluate pole/zero location as a function

of link shape, it was necessary to keep some parameter constant to aid in the evaluation.

For a single-link manipulator rotating in the horizontal plane, the link's mass moment of

inertia about its axis of rotation, Iy, was of importance. This parameter directly affected

the dynamic equations of motion and was an important design parameter in terms of

motor selection. In the following studies, several link designs were evaluated for a given

value of IV. Appendix C shows the derivation of a tapered link's moment of inertia about

its axis of rotation in terms of the finks parameters: L, A, B, H, and p. The final result

was:

! _ p=cA3H.. +A2 B +AB 2 + B3 + 4AL 2 + 12BL 2) (4.3)
-3' 48

For a given tapered link design, one can use Equation 4.3 to determine Iv. Knowing Iy,

one can change the value of A and solve Equation 4.3 for B. Since the equation was

cubic in B, the commercial package Mathematica was used to solve for B. Following

this method, a group of tapered link designs were generated all with the same Iy.

The first study investigated several tapered link designs with nominal dimensions

and all designs having IV=764.05 in-lb-sec 2. Table 4.5 presents the raw data for each

of these designs. Even with IV held constant, it was still difficult to interpret the data.

To aid in developing a relationship between zero location and link shape, the zeros were

normalized with respect to the first pole for each design. The first pole is an important
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parameter in control system design, and normalizing the zeros with respect to the first

pole aided in the interpretation of the results. Table 4.6 presents the normalized data for

thosedesignswithIy=764.05 in-lb-sec2. The secondstudypresentsdataforseverallink

designswith nominal dimensionsand Iyffi1528.1in-lb-sec2. Table 4.7 shows theraw

datafortheselinkdesignsand Table 4.8 shows thenormaLizeddataforthesedesigns.

Figures4.4 and 4.5 show pole/zeromaps forselectedvaluesof R forI./=764.05and

I,:--1528.I respectively.

Severalpatternswere evidentby examiningtheraw data.Firstas a generalrule,

both thepolesand zerosincreased(moved away from the origin)as thetaperon the

beam increased.Increasingthetapereffectivelymoved more of thelinkmass closerto

thebase. Increasingthevalueof thepolesisoftendesirableto push them out of the

system bandwidthand increasesystem responsetime. The orderingof polesand zeros

was thesecondpatternrecognized.Ina minimum phase system,thepolesand zeroswill

both lieon theimaginaryaxisincomplex conjugatepairsand in an alternatingorder.

This means, along theimaginaryaxis,thepolesand zeroare found intheorderp_,z_,

i_,z2,etc.or viceversa. Previousresearch[18]has foundthisalternatingorderof poles

and zerosdoes nothold fornonminimum phase systems.ReferringtoTable4.5,notice

theorderofthemagnitudeofpolesand zeroswas: zl,P_,_,za,P3,z3,p4,Ps,Z4....I_jumped

in front of z2, and the same occurred for Ps. This reordering of poles and zeros can be

critical as accurate knowledge of the pole/zero order is important for control system

design.
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Table 4.5: Tapered Beams With Iy=764.05

Zero A=.375 A=.4 A=.5 A=.6 A=.7 A=.8 A=.9 A=I

Pole B=.375 B=.367 B=.333 B=.3 B=.267 B=.233 B=.2 B=.167

I 7.745 8.153 9.762 I1.34 12.90 14.44 15.98 17.50

10.68 11.04 12.46 13.84 15.21 16.60 18.03 19.52

2 41.85 43.15 47.38 51.37 55.05 58.45 61.60 64.51

34.59 35.48 38.80 41.87 44.73 47.41 49.94 52.36

3 103.4 105.9 115.0 123.1 130.2 136.4 141.7 146.2

72.18 73.88 80.17 85.75 90.75 95.19 99.14 102.6

4 192.2 196.6 212.7 226.6 238.6 248.7 257.1 263.6

123.4 126.2 136.5 145.5 153.4 160.1 165.9 170.6

5 308.4 315.3 340.5 362.0 380.3 395.5 407.8 416.9

188.3 192.6 208.0 221.2 232.6 242.3 250.3 256.5

Table 4.6: Normalized Data For Iy=764.05

Zero R=I.00 R=1.09 R=l.50 R--2.00 R=2.62 R=3.43 R-4.50 R=5.99

1 0.7252 0.7385 0.7835 0.8194 0.8481 0.8699 0.8863 0.8965

2 3.919 3.909 3.803 3.712 3.619 3.521 3.417 3.305

3 9.682 9.592 9.230 8.895 8.560 8.217 7.859 7.490

4 18.00 17.81 17.07 16.37 15.69 14.98 14.26 13.50

5 28.88 28.56 27.33 26.16 25.00 23.83 22.62 21.36
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Table 4.7: Tapered Beams With Iy-1528.1

Zero A=.75 A-.8 A-.9 A--I.0 A=I.1 A=l.2

Pole B=.75 B=.733 B-.7 B-.667 B=.633 B=.600

1 15.49 16.31 17.92 19.52 21.11 22.68

21.35 22.08 23.51 24.92 26.30 27.68

2 83.71 86.03 90.50 94.76 98.83 102.7

69.16 70.95 74.35 77.60 80.73 83.74

3 206.7 211.7 221.2 230.1 238.4 246.2

144.4 147.7 154.2 160.3 166.1 171.5

4 384.4 393.2 409.9 425.4 439.9 453.2

246.8 252.5 263.1 273.1 282.4 291.0

5 616.7 630.6 656.8 681.0 703.3 724.0

376.7 385.1 401.1 415.9 429.6 442.4

Table 4.8:

Zero

1

2

3

4

5

Normalized Data For Iy= 1528.1

R= 1.00 R= 1.09 R- 1.29

0.7256 0.7385 0.7623

R= 1.50

0.7836

R= 1.74

0.8026

R=2.00

0.8195

3.921 3.896 3.849 3.803 3.757 3.712

9.682 9.588 9.407 9.233 9.603 8.894

18.00 17.81 17.44 17.08 16.72 16.38

28.89 28.56 27.93 27.33 26.74 26.16

51



6O

'_0

2O

-2O

1 - R,,1.0

2 -- R,,2.0

3 -- R--e.0

...... • *.*.e..°_e-.._°q).

*3
J
f a

i3

i 12 3
Q"q" O '0 -e

I 2 3

Reoi Axle

t
8O

Figure 4.4: Pole/Zero Map of Selected Designs For Iy=764.05

l

100

5O

-50

-I00

1 - R,,1.0

2 - R--1.5

3 - R--2.O

il

123 I 2 3
......................... •o..4....-e .............. ° .................... 4NFe-.......4 b....... O41,o ................................... .e-..-,o-._l. ..........................

i

T
1 I I I

50 - I O0 -50 0 50 1 O0

Real Axle

15O

Figure 4.5" Pole/Zero Map of Selected Designs For Iy= 1528.1

52



4.4.1 Designs With Constant Iy

Important information was learned from examining the relationship between the

taper ratio, R, and the values of the normalized zeros. The first normalized zero was

of most importance, and Figure 4.6 shows this relationship for the data from the first

study fitted with a third order polynomial. Figure 4.7 presents the same data for the

second study. The significance was not the actual relationship, but the fact that the two

relationships were nearly the same for both cases. Figure 4.8 better illustrates this point

showing both polynomial fits on the same graph. Even though the coefficients were

different for each polynomial fit, the curves were nearly identical.

This illustrates an important relationship in the design of tapered links. For a

given ratio R, the normalized zero will always remain the same. The designer can

choose the location of the first pole and zero, determine the normalized zero, and then

using Figure 4.8 find the appropriate taper ratio R. Of course there are constraints on

this process. A ratio less than one corresponds to a taper with B greater than A, which

is usually undesirable. At the other end, R is limited by the value of H. If A is larger

than the value of H, the link will be wider at the base than it is tall, and the assumption

that the link is stiff in the vertical plane will no longer be valid. Although the designer

can choose the pole/zero relationship, the values of normalized zeros are limited to

approximately 0.72-0.82 (according to Figure 4.8).
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Figure 4.6: First Normalized Zero vs. R For Iy=764.05
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Figure 4.7: First Normalized Zero vs. R For I_= 1528.1
NZ=0.0168R3-0.1191R2+0.3331R+0.4948
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Figure 4.8: Comparison of Polynomial Curve Fits
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A simpleverification of theaboverelationshipis the uniform beam which has no

taper. According to the stated relationship, the normalized first zero should be the same

for all uniform beams. Table 4.9 presents the results for several uniform beam designs.

All cases had nominal dimensions. The normalized zero in all cases was 0.726 which

confirmed the normalized zero will not change as long as R is constant.

Table 4.9: ZERO Results For Uniform Beam Designs

Zero W=0.25" W--0.5" W=0.75"

Pole

1 5.163 10.33 15.49

7.116 . 14.23 21.35
.... _-._.-----NN--.---...-..=

0,726 0.726 i 0.726

2 27.90 55.80 83.71

23.06 46.12 69.19

3 68.90 137.8 206.7
48.12 96:23 144.3

4 128.1 256.2 384.4

82.28 164.6 246.8

5 205.6 411.1 616.7

125.6 251.1 376.7

4,4,2 Designs With Constant Poles and Zeros

The previous study demonstrated how the designer can choose the pole/zero

relationship and then determine the appropriate taper design from the ZERO results.

This study presents the designer with another freedom. Once the taper is chosen, the

designer can change the link to independently adjust the value of lv. Table 4.10 presents
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the results of a study performed on designs with Lffi40 inches, and all designs have the

same taper. The height of the link was changed to adjust the value of Iy.

Table 4.10: Variable Height Designs

Zero H=I.0" H=I.5" H=2.0"
Pole

1 11.34 11.34 11.34
13.84 13.84 13.84

2 51.37 51.37 51.37

41.87 41.87 41.87

3 123.1 123.1 123.1

85.75 85.75 85.75

4 226.6 226.6 226.6

145.5 145.5 145.5

5 362.0 362.0 362.0

221.2 221.2 221.2

Iy I 764.05 1146.1 1528.1

One should notice that the pole and zero locations of all designs in Table 4.10 were the

same, yet the value of Iy changed with adjustments in link height. Since the adjustment

of H is out of the plane of motion, it had no effect on the location of poles and zeros.

Combining this with the results from the previous study, the designer can effectively

choose the location of poles and zeros and independently adjust the links moment of

inertia about its axis of rotation to meet the needs of the particular system.
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CH.4ArI'ER V

CONCLUSIONS

$,1 Summary and Contributions

Program ZERO was developed as a tool to locate the poles and zeros of a single-

link manipulator modeled as a pinned-free Euler-Bernoulli beam. The program used

transfer matrix theory to allow for variable cross-sections granting the designer new

freedom in analysis of nonuniform link designs. The results were shown to be very

accurate when system pole location was compared to analytic solutions for uniform

beams. Several results from previous studies were confirmed with this research.

First, the reordering of poles and zeros was confirmed for nonminimum phase

systems. Accurate knowledge of pole/zero order is critical for proper control system

design. In conjunction with this, Tables 4.3 and 4.4 show that even for very few

elements in the model, the program still predicts the proper order of poles and zeros.

Second, the studies presented suggested the nonminimum phase characteristics

could not be eliminated by changing the structural design of the link. The system will

be nonminimum phase above a finite frequency dictated by the location of the fh'st

nonminimum phase zero. It may be possible that this frequency is out of the operating

range and not of concern to the designer.
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The major contributions of this research are the development of the ZERO

program to determine zero and pole location for a single-link nonuniform flexible

manipulator, and formulation of a design procedure to place the first pole and zero and

independently change the value of the link's moment of inertia about its axis of rotation

to meet the needs of the system.

Program ZERO was set up specifically for pinned-free boundary conditions of the

model and determines pole and zero location based on a frequency range entered by the

user. Linearly tapered beams were studied in this research, but any type of nonuniform

beam can be analyzed by program ZERO. Slight modifications would also allow for

different boundary conditions.

The design procedure for tapered beams allows the designer to choose the first

pole and zero subject to certain physical constraints. These physical constraints only

allow for approximately 25% variation in R according to Table 4.6. This zero to pole

ratio defines a particular taper ratio according to the collected data. Keeping the ratio

the same, the size of the taper can be changed to get the proper magnitude of the pole

and zero. With the pole and zero placed, the height of the beam can be changed to

adjust the link's moment of inertia about its axis of rotation. This procedure can be used

to design tapered links to meet the particular requirements of the system.

$.2 Future Work

Program ZERO was designed to model a single-link manipulator modeled with

pinned-free boundary conditions. This is a simplified model, but it was necessary to
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show transfer matrices yield good results for this case before progressing to more

complicated problems. Now that transfer matrices have proven useful to solve for zero

location, future work exists to extend the results of this research.

First, the program could be modified so the user could input the desired boundary

conditions which best represent the system. This could include hub inertia or end-point

mass. Second, the program could be extended to multi-link designs to predict pole and

zero location for different configurations. Transfer matrices have been derived for rotary

joints and many other elements. The DSAP package developed by Book, et. al. [A]

handles multi-link models and would be a good reference. Finally, the results for

tapered link designs could be applied to the inverse dynamic algorithm developed by

Kwon and Book [N]. This method requires mode shapes for the assumed modes and

uses pinned-pinned boundary conditions. To help with this transition, Appendix D gives

the natural frequencies for some tapered designs modeled with pinned-pinned boundary

conditions. These results can be used to generate the modes shapes necessary for the

inverse dynamic algorithm.
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APPENDIX A

PROOF OF REAL TRANSFER MATRIX

The subroutine ZFALSE can only find the roots of a real equation. The

following proof shows a purely complex frequency will result in a transfer matrix with

only real elements. The damping factor is assumed to be zero. The transfer matrix for

a Bernoulli-Euler beam has the form:

TM _"

Co IC1 aC2 alC_

_4C 3 aC l aC 2t Co t

_'C 2 _'IC a
c o IC_

a a

p'c_ _'c2 P'c3
al a l Co

(A.1)

where,

c o = {(cosh_ * o_)

l.(sinhp + sial3)Cl = i_

C3 = _;a,Csirthl3- sin_)

(A.2)

(A.3)

(A.4)

(A.5)
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and

64.6)
12

a = w
E/

(A.7)

The following symbols are defined as

E ffi

I ffi

mass density per unit length
frequency in radians/second
Young's modulus
Cross sectional area moment of inertia

length of the beam

As explained in Chapter 3, to search for real positive values of s, the real part of o_

should be zero and the imaginary part of o_should be negative. Using the notation Ix,y]

to denote a complex number with real part x and imaginary part y, a purely imaginary

frequency, _, can be defined as:

¢o = [0,-p] where O<p_= (A.8)

To simplify the proof let:

a = 1 (A.9) 14p" - 1 (A.IO)
E1

Now to find 3 take the square root of 3 _ two times. For a detailed discussion of finding

the square root of a complex number see Churchill and Brown [7]. The principle roots

are."
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p+ = [O,-p]2 = [_p2,0 ]

13_ = _ = [O,-p]
p = _ = [0.707V_,-O.707vCp]= [b,-b]

where b = 0.707¢rp

Expand cosh _ in terms of _ =[b,-b] to get:

coshl3= _(e_+ e-b

: +
- t(e+e-a,+ e-bea')

= _(eb[cos(-b),sia(-b)] + e-b[cosb,siab])

(A.11)

(A.12)

(A.13)

(A.14)

For any angle b:

cosb = cos(-b) (A. 15) _ = - sin(-b) (A. 16)

Using these relations in Equation (A. 14), cosh fl simplifies to:

(A. 17)

Similarly cos fl reduces to:

t(e_P + e-+P)cosp--__

-- _[ (e+'+ e-')_b, (e_ - e-_)siab ] (A. 18)
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Similarly sinh _ reduces to:

_(eP- e-b

(A.19)

Similarly sin 8 reduces to:

S_lll3 = _.(e 'p - e-,P)

=_Cce"+e-")_.+,, -C_"- e+)co_ ] (A.20)

With these expansions, one can substitute into the expressions for Co, C1, C2, and C3 to

show the imaginary parts of these functions are zero. Substitute (A.17) and (A.18) into

(A.2) and solve for Co to get:

'{+c," +co = _ + e-+)¢o_,-(e+ - e-+)si_,]+ _ (e_ + e-+)co_,Ce+ - e-+)si_

= _ (e# + e-#)cosb ,0 ] .+ (A.21)

Substitute (A. 17) and (A. 18) into (A.3) and solve for Ct to get:

c,- .+{.+E(,'-,-'>oo.+.-c,"+,,-':_+++._c,,"++-">+.-(,'- ,-">_+,l)
[b,-bl

_{(.+- ,-+)+o++(,. + ,-,)_). 1-(,+- ,-+)0o_- (,_ +,-+)_.+)l
II

[b,-b]
(A.22)
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Let,

bI ffi(e_ - e-_)cosb+ (e_ + e-b)siab (A.23)

Now, Equation (A.22) is simply

C1 _ 1 tb,.-bl] _ It bb, + bbl. -bb, + bb 1] (A.24)

Substituting back in for bl, C1 reduces to:

I (eb e-b)cosb÷ (eb + e-b)sh_ib,0 ]¢i = -_[ - (A.25)

Substitute Equations (A. 19) and (A.20) into Equation (A.4) and solve for C2 to get:

! 1 b

= -ff -(,_ - ,-")si_,, o]
[0,2b _]

(A.26)

Substitute Equations (A. 19) and (A.20) into Equation (A.5) and solve for C3 to get:

[2b3,2b 3]

,_((,,"- .-"_._, - (,,_.. ,-,.),_}.1(,,,,- ,,-")¢,,_b- (,,"÷"'_)_'}l
[2/,3,2/, 3]

(A.27)

Let

b2 = (eb - e-b)cosb - (eb + e-b)sinb
(A.28)
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Now, Equation (A.30) simplifies to:

g-
(2b_,2b 3)

Substituting back for b3, C3 becomes:

(A.29)

C3 _ 1 [ (e b _ e_b)cosb _ (e b + eq,)sinb, 0 ] (A.30)
Sb 3

All elements of the matrix in Equation (A. 1) are shown to be real elements. Equations

(A.21), (A.25), (A.26), and (A.30) show the imaginary parts of Co, C1, C2, C3 are zero,

respectively. Equation (A. 11) shows the imaginary part of B4 is zero. As long as the

damping factor is zero, Equation (A.7) will always be real.
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APPENDIX B

DERIVATION OF ZEROS FUNCTION

The zeros of a system are defined as the frequencies that result in zero system

output for an arbitrary system input. To determine the system zeros, one must know a)

the system input, b) the system output, and c) the relationship between the input and the

output. This can be expressed in an equation of the form:

TRANSFERI
INPUT ,, _FUNC770t¢) * OUTPUT (B. 1)

For an arbitrary input to the system, the only way to guarantee zero output is for the

transfer function to be zero at the given frequency.

As presented in Chapter 2, transfer matrix theory is very similar to Finite Element

Analysis in that the beam is modeled as a system of contiguous elements each having its

own transfer matrix. These element transfer matrices can be multiplied together to

generate the overall transfer matrix for the beam. Now the equation for the beam can

be expressed as:

v ,,., [B,, ... t vj,.o

(B.2)
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Figure A. 1 shows the system under consideration, a flexible beam. The input to

the system is the torque applied at the base. The output of the system is the position of

The boundary conditions corresponding to this system are:the end-point of the beam.

At x =L:

At xffi0:

M-0, V=0 (free)

w=o, M=0 (pinned)

Substituting the boundary conditions and the system input (wD and output (0 into

Equation (B.2), the equation for the beam becomes:

0_ = -. • _ (B.3)

0 _._ [B,, B_] _.o

Equation 03.3) can be expanded to find the relationship between input and output. The

four equations are:

-W L = BI2_'0 + Bt3"_ + BI4Vo

*L" _=*o + _2: + B_Vo

o : B_,o + B_: + B_,Vo

0- _,_,o ÷ s,: + B,,vo

03.4)

03.5)

03.6)

(B.7)

Since eL is not of interest, Equations 03.4), (B.6), and 03.7) can be solved for the

relationship between wL and r:

[Bt:zB_Bs3 - Btz;B_B43 + Bt3B_B42 - Bt3B_B32 ÷ Bt4B4sB32 - Bt4B33B4z"
, 03.8)

68



The above equation describes the relationship between the input and output for the system

under consideration. When the term inside the brackets goes to zero, the system is said

to have a zero at the corresponding frequency.
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APPENDIX C

INERTIA OF A TAPERED LINK ABOUT ITS BASE

The inertia of a tapered link about its axis of rotation is an important parameter

in controls since it directly effects the equations of motion. Figure C. 1 shows a sketch

of a tapered link with the appropriately defined coordinate axes. For a link rotating

about the y axis in the horizontal plane (xz), the mass moment of inertia of interest is Iy.

Y

T
A Y

Figure C. 1: Tapered Beam with Differential Element
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Following the method outlined in Beer and Johnson IV], the differential mass of the

element is:

dm= p Hwdx (C. 1)

where p is the density of the material

For a linear taper the following relationship can be derived to express w as a function

of A, B, and L:

w(x) =A + (_-_)x (C.2)

The differential inertia about axis y' is:

I w2dm#IYI= (C.3)

Using the parallel axis theorem one can determine dIy:

#Zy= alyI+ xZdm
= _wZdm + x2dm

ll

(C.4)

Iy can be found by integrating the above expression for dIy over the length of the beam.

L

zy= fazy (c.5)
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Making substitutions, the above equations simplify to:

pH(AL - Ax + Bx,)dm
L

(c.6)

pH(AL - Ax + /Ix) 3dayI
12/, 3

(C.7)

dly = p H (AL -Ax +Bx)(A2L 2 -2A2Lx +2ABLx +A2x 2 -2ABx 2 +B2x 2 + 12L2x 2)

12L 3 (C.8)

ly = PH(A3 + A2B + AB 2 + B 3 + 4AL 2 + 12BL 2)
48--

(C.9)

Equation C.9 can be used to determine different tapered link shapes that will have the

same value of inertia about the axis of rotation. This is helpful in evaluating the different

link shapes. Once A, B, H, L, and p are selected for the initial link, Equation C.9 is

used to evaluate the inertia, Iy. Assuming H, L, and p remain the same, B can be

determined for various values of A. This involves solving a cubic equation in B, which

is well suited to a program like MathematicaI

1Mathematica by Stephen Wolfram,

computations, 1988.
a commercial program for doing
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APPENDIX D

MODE SHAPES FOR PINNED-PINNED

BOUNDARY CONDITIONS

To implement the results of this research in the inverse dynamic control algorithm

developed by Kwon and Book [8], the mode shapes must be determined for pinned-

pinned boundary conditions. The natural frequencies for a tapered link are easily

determined with the ZERO program by altering the code. Pinned-pinned boundary

conditions change the frequency determinant which changes the search function in

program ZERO. To help aid in this implementation, this appendix presents the state

matrix and modes shapes for the first two natural frequencies of a given tapered design.

The tapered design was chosen from Table 4.5 and has A=0.6 in. and B=0.3 in.

(R=2.0). As described earlier, the beam has L=40 in., H=I in., and properties of

aluminum. With the natural frequencies determined from program ZERO and the model

parameter input file, MA/Z,AB 1 was used to generate the mode shapes. For a

discussion of mode shape generation using transfer matrices see Majette [10].

_386-MATLAB, a high-performance interactive software

engineering numeric computation, The Mathworks, Inc., 1990.
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The state matrix consists of the state vectors at each interface for the given natural

frequency. The chosen design has twenty elements; therefore, the state matrix will have

twenty-one columns and four rows. The state matrix is given for both the first and

second natural frequencies. Recall from Chapter 3 that the state vector is described by

Equation D. 1. Figures D. 1 and D.2 present the mode shapes for the first and second

natural frequencies respectively.

=] s/ope
U = | /tlome_

[ s ar lorce

(D.1)
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State matrix for first natural frequency (_1 =7.886 rad/sec):

Columns 1-4:

O.O000000e+O0

-3.7090242e-04

O.O000000e+O0

1.0000000e+O0

-3.8934437e-04

-3.6783076e-04

1.0483872e+00

9.8791457e-01

-1.1406488e-03

-3.4168377e-04

3.0463353e+00

8.9500392e-01

-1.8071610e-03

-2.8756676e-04

4.7608846e+00

7.2075561e-01

Columns 5-8:

-2.3301876e-03

-2.0611699e-04
6.0383554e+00

4.8287558e-01

-2.6553124e-03

-1.0076284e-04

6.7680119e+00

2.0427987e-01

-2.7384772e-03

2.2124724e-05

6.8915262e+00

-8.8434909e-02

-2.5521281e-03

1.5332873e-04

6.4086547e+00

-3.6704511e-01

Columns 9-12:

-2.0908440e-03

2.8118602e-04

5.3781616e+00

-6.0413512e-01

-1.3757614e-03

3.9233089e-04

3.9133899e+00

-7.7571394e-01

-4.5703719e-04

4.7280928e-04

2.1723473e+00

-8.6376466e-01

5.8642232e-04

5.0954752e-04

3.4274484e-01

-8.5844303e-01

Columns 13-16

1.6506650e-03

4.9212125e-04

-1.3769667e+00

-7.5963004e-01

2.6143541e-03

4.1471370e-04

-2.7989053e+00

-5.7756198e-01

3.3506190e-03

2.7809584e-04

-3.7672233e+00

-3.3231267e-01

3.7429093e-03

9.1400251e-05

-4.1771564e+00

-5.1995553e-02

Columns 17-20:

3.6632194e-03

-1.6516173e-04

-3.9894727e+00

2.2929341e-01

3.0754690e-03

-3.8567645e-04

-3.2418047e+00

4.7394149e-01

2.0538451e-03

-5.7100923e-04

-2.0443862e+00

6.5190731e-01

7.1951226e-04

-6.7667652e-04

-5.5675806e-01

7.4634877e-01

Column 21:

-9.0368192e-17

-6.8420890e-04

2.3670925e-01

7.5752083e-01
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State matrix for second natural frequency (_ffi32.06 rad/sec):

Columns 1-4:
O.O000000e+O0

-3.7090242e-04
O.O000000e+O0
1.0000000e+O0

-3.8934437e-04
-3.6783076e-04

1.0483872e+00
9.8791457e-01

-1.1406488e-03
-3.4168377e-04

3.0463353e+00
8.9500392e-01

-1.8071610e-03
-2.8756676e-04

4.7608846e+00
7.2075561e-01

Columns 5-8:
-2.3301876e-03
-2.0611699e-04

6.0383554e+00
4.8287558e-01

-2.6553124e-03
-1.0076284e-04

6.7680119e+00
2.0427987e-01

-2.7384772e-03
2.2124724e-05
6.8915262e+00

-8.8434909e-02

-2.5521281e-03
1.5332873e-04
6.4086547e+00

-3.6704511e-01

Columns 9-12:
-2.0908440e-03

2.8118602e-04
5.3781616e+00

-6.0413512e-01

Columns 13-16=
1.6506650e-03
4.9212125e-04

-1.3769667e+00
-7.5963004e-01

-1.3757614e-03
3.9233089e-04
3.9133899e+00

-7.7571394e-01

2.6143541e-03

4.1471370e-04

-2.7989053e+00

-5.7756198e-01

-4.5703719e-04
4.7280928e-04

2.1723473e+00

-8.6376466e-01

3.3506190e-03

2.7809584e-04

-3.7672233s+00

-3.3231267e-01

5.8642232e-04
5.0954752e-04
3.4274484e-01

-8.5844303e-01

3.7429093e-03
9.1400251e-05

-4.1771564e+00
-5.1995553e-02

Columns 17-20:

3.6632194e-03

-1.6516173e-04

-3.9894727e+00
2.2929341e-01

3.0754690e-03

-3.8567645e-04

-3.2418047e+00
4.7394149e-01

2.0538451e-03

-5.7100923e-04

-2.0443862e+00

6.5190731e-01

7.1951226e-04

-6.7667652e-04
-5.5675806e-01

7.4634877e-01

Column 21:

-9.0368192e-17

-6.8420890e-04

2.3670925e-01

7.5752083e-01
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Figure D. 1: First Mode Shape For Tapered Link
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Figure D.2: Second Mode Shape For Tapered Link
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APPENDIX E

PROGRAM SOURCE CODE
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C
C

C
C

C
C

C

C
C

C

C
C

C
C

C
C

C

C
C

C

PROGRAM ZERO

THIS PROGRAM IS DESIGNED TO IDENTIFY THE LOCATION OF SYSTEM ZEROS

AND POLES FOR THE NONCOLOCATED CONTROL STRUCTURE OF A SINGLE LINK

MANIPULATOR. IT USES THE THEORY OF TRANSFER NATPIX ALGEBRA TO

GENERATE THE MODEL FOR THE BEAM. THE PROGRAM IS DESIGNED TO HANDLE

A BEAN WITH VARIABLE CROSS-SECTIONAL AREA ALONG THE LONGITUDINAL AXIS

THIS MODEL ASSUMES NO DAMPING, AND THEREFORE THE ZEROS WILL LIE

ALONG THE REAL AXIS IN REFLECTED PAIRS ABOUT THE IMAGINARY AXIS AND

POLES WILL LIE ALONG THE IMAGINARY AXIS IN COMPLEX CONJUGATE PAIRS.

ALL CALCULATIONS ARE PERFORMED IN DOUBLE PRECISION.

VARIABLES:

NE- NUMBER OF ELEMENTS IN THE MODEL (I)

EP- ELEMENT PARAMETER MATRIX (R)

L- ELEMENT LENGTH, EP[?,I] (R)

MPL- MASS PER UNIT LENGTH, EP[?,2] (R)

ARI- AREA MOMENT OF INERTIA, EP[?,3| (R)

E- YOUNG'S MODULUS, EP[?,4] (R)

DF- DAMPING FACTOR, EP[?,5] (R)

FINPUT- STORES INPUT FILE NAME (C)

LIMIT- MAXIMUM NUMBER OF ELEMENTS (INTEGER PARAMETER)

C *eMOTE- DF MUST BE ZERO FOR THIS PROGRAM**

C WRITTEN BY DOUG GIRVIN, 1991

DOUBLE PRECISION EP,L,MPL,AMI,E,DF

CHARACTER FILE*20,FINP*24,DUM*I

PARAMETER (LIMIT-100)

DIMENSION EP(LINIT,5)

COMMON NE,ITYPE,EP

C INPUT FROM KEYBOARD OR FILE?

WRITE(6,100)

READ(5,*) N

IF (N.EO.I) GO TO 5

IF (N.EO.2) GO TO i0

C DESCRIPTION OF INPUT VARIABLES

WRITE(6,105)

READ(5,*)N

IF (N.EO.1) GO TO 5

IF (N.EO.2) GO TO I0

C MANUAL INPUT FROM KEYBOARD

5 WRITE(6,110)

READ(5,*) NE

DO 20 I-1,NE

WRITE(6,115) I

READ(5,*) EP(I,lJ,EP(Io2),EP(I,3J,EP(I,4),EP(I,5)

20 CONTINUE

GO TO 15

C INPUT FROM A TEXT FILE

I0 WRITE(6,120)

READ(5,*) FILE

FINP- FILE // '.IMP'

OPEN(12,FILE-FINP,STATUS-'OLD')

READ(12,130)

READ(12,*) NE

DO 25 I-I,NE

READ(12,*) EP(I,I),EP(Io2),EP(Io3),EP(I,4),EP(I,5)

25 CONTINUE

C CALL SUBDIVISION SUBROUTINE TO INPUT SEARCH INTERVALS

15 CALL SUBDIV(FILE)

IF(N.EO.2) CLOSE(12)

WRITE(6,125)

i00 FORMAT(///T2,'THIS PROGRAM DETERMINES THE LOCATION OF ZEROS',/,

$ T2,'AND POLES FOR A BEAM USING TRANSFER MATRIX THEORY.',//,
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$ T2,'WOULD YOU LIKE TO ENTER THE MODEL INFORMATION',/,

$ T2,'NANUALLY OR THRU AN INPUT FILE?',/,

$ T2,'I FOR KANUALD 2 FOR FILE, 3 FOR INPUT DESCRIPTION'}

105 FORMAT(//T2,'MODELING PARAMETERS:',//,

$ ' NE- NUMBER OF ELEMENTS IN THE MODEL',/,

$ ' L- LENGTH OF ELEMENTS',/,

$ ' MPL- PASS PER UNIT LENTGH OF ELEMENT',/,

$ ' ARI- AREA MOMENT OF INERTIA OF ELEMENT',/,

$ ' E- YOUNGS MODULUS OF ELEMENT',/,

$ ' DF- DAMPING FACTOR OF ELEMENT(MUST BE ZERO FOR',/,
$ ' THIS PROGRAM)',//,

$ ' TYPE: I FOR KEYBOARD INPUT, 2 FOR FILE INPUT'}

II0 FORMAT(/T2,'INPUT THE NUMBER OF ELEMENTS IN THE MODEL- NE'}

115 FORKAT(/T2,'INPUT L,MPL,ARI,E,DF FOR ELEMENT ',I3)

120 FORMAT(//T2,'THE INPUT FILE RUST HAVE EXTENSION ".INP"',/

$ T2,'AND LINES I-5 ARE RESERVED FOR COMMENT'//

$ T2,'WHAT IS THE FILE NAME, WITHOUT EXTENSION,'

$ ' WITHIN APOSTROPHES'}

125 FORMAT(//T2,'THE SCREEN OUTPUT CAN BE FOUND IN THE FILE WITH '

$ /T2,'EXTENSION ".OUT" AND THE VALUES OF THE FUNCTION '

$ /T2,PUSED TO DETERMINE A ZERO CAN BE FOUND IN THE '

$ /T2,'FILE WITH EXTENSION ".DAT"',//)

130 FORMAT(////)
END
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C
C

C

C
C

C
C

C
C

C
C

C

C
C

C

C
C

C
C

C
C

C
C

SUBROUTINE SUBDIV(FZLE)

THIS SUBROUTINE HANDLES USER INPUT OF THE COMPUTATION PARAMETERS

AND SEARCH INTERVALS FOR THE POLES AND ZEROS. ONCE ALL INFORMATION

IS ENTERED, THE MAIN SEARCH INTERVAL IS DIVIDED INTO SUBINTERVALS TO

BE SENT TO ZFALSE. THE RESULTS RETURNED FROM ZFALSE ARE PRINTED TO

THE SCREEN AND OUTPUT FILES FOR LATER EVALUATION.

VARIALBZS:

FOUT- OUTPUT FILE FOR LOCATION OF POLES AND ZEROS (C)

RAW- OUTPUT FILE FOR ZERO (POLE) FUNCTION VALUES

AT EACH INTERVAL (C)

EPS- FIRST CONVERGENCE CRITERIA FOR ZFALSE (R)

NSIG- SECOND CONVERGENCE CRITERIA FOR ZFALSE (I)

ITI%AX- HAXIHUM ITERATIONS PER SUBINTERVAL (I)

LOW- LOWER LIMIT OF MAIN SEARCH INTERVAL (R)

HIGH- UPPER LIMIT OF MAIN SEARCH INTERVAL (R)

NDIV- NUMBER OF SUBINTERVALS (I)

DELT- LENGTH OF EACH SUBINTERVAL (R)

XL- LOWER LIMIT OF SUBINTERVAL PASSED TO ZFALSE (R)

XR- UPPER LIMIT OF SUBINTERVAL PASSED TO ZFALSE (R)

OMO- POLE OR ZERO FOUND BY ZFALSE (R)

WRITTEN BY DOUG GIRVIN, 1991

DOUBLE PRECISION EPS,DELT,HIGH,LOW,XR,XL,OMGoXLOLD

CHARACTER FILE*20,FOUT*24,RAW*24

COMMON NE,ITYPE,EP

FOUT- FILE // ".OUT'

RAW- FILE // '.DAT'

OPEN(10,FILE-FOUT,STATUS-'NEW')

OPEN(I1,FILE-RAW,STATUS-'NEW')

WRITE(t1,140) FILE

WRITE(6,125)

READ(5,*) ICP

IF(ICP.EQ.2) GO TO 5

WRITE(6,130)

5 WRITE(6,100)

READ(5,*) EPS,NSIG,ITMAX -_

WRITE(6,101)

C ZERO CALCULATION

READ(5,*} LOW,HIGH,NDIV

ITYPE-I

WRITE(10,135) FILE,EPS,NSIG,ITMAX,NE

WRITE(6,120)

WRITE(10,119)
GOTO 15

C POLE CALCULATION

10 WRITE(6,102)

READ(5,*) LOW,HIGH,NDIV
ITYPE-2

WRITE(6,121)

WRITE(10,*)

WRITE(It,141)

15 DELT-(HIGH-LOW}/NDIV

XL-LOW

DO 20 I-I,NDIV

XR-XL÷DELT

CALL ZFALSE(EPS,NSIG,XL,XR,OMG,ITMAX,IER)

C MAXIMUM ITERATIONS REACHED WITHOUT CONVERGENCE

IF(IER.EQ.130} THEN

WRITE(6,105) XL,XR

END IF

C NO POLE (OR ZERO) IN SUBINTERVAL

IF(IER.EQ.129) THEN

IF(ITYPE.E0.1) THEN
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WRITEr6,110) XL,XR

ELSE

WRITE(6,111) XL,XR

END IF

END In

C POLE (OR ZERO) WAS FOUND IN SUBINTERVAL

IF(IER.LT.129) THEN

IF(ITYPE.EQ.I) THEN

WRITE(6,115) XL,XR,ONG

WRITE(10,117)OHG

ELSE

WRITE(6,116) XL,XR,ONG

WRITE(10,118)OHG

END In

END In

XL-XR

20 CONTINUE

IF(ITYPE.EQ.I) GOTO I0

100 nORMAT(IX,'INPUT EPS,NSIG,ITMAX')

101 nORNAT(IX,'INPUT LOW,HIGH,NDIV nOR ZEROS')

102 nORNAT(//,IX,'INPUT LOW,HIGH,NDIV nOR POLES')

105 FORNAT(T2,Fg.2,' TO ',Fg.2,T40,'NAX ITERATIONS REACHED WITHOUT'

$ ' CONVERGENCE')

110 FORNAT(T2,Fg.2,' TO ',ng.2,T40,'NO ZERO')

111 FORMAT(T2,ng.2,' TO ',ng.2,T40,'NO POLE')

115 FORNAT(T2,Fg.2,' TO ',Fg.2,T40,'ZERO AT ',n10.3)

116 FORNAT(T2,Fg.2,' TO ',Fg.2,T40,'POLE AT ',ni0.3)

117 FORMAT(T2,'ZERO AT ',n10.3)

118 nORNAT(T2,'POLE AT ',n10.3)

119 FORNAT(//,TT,'RESULT'/,TT,' ...... ')

120 FORNAT(//,T30,'ZEROS',/,TT,'SEARCH INTERVAL',T40,'RESULT'/,

$ T7,' ............... ',T40,' ...... '/)

121 FORNAT(//,T30,'POLES',/,T7,'SZARCH INTERVAL',T40,'RESULT'/,

$ T7,' ................ ,T40,' ....... /)

125 FORNAT(IX,'WOULD YOU LIKE DEFINITIONS OF THE COMPUTATION'

$ ' PARAMETERS?'/' 1 FOR YES, 2 nOR NO'}
130

135

140

141

$
$
$
$
$
S
$
$
$
$
$
$
FORMAT(IX,

$
$
nORMAT(T2,

$
FORNAT(//,T30,'POLES',/

$ TS,'XLL',T21,

CLOSE(10)

CLOSE(11)

RETURN

END

FORMAT(lX,'COMPUTATION PARAMETERS IN ORDER OF INPUT:'//

EPSILON- FIRST CONVERGENCE CRITERION. A TRIAL'/

ROOT, X, IS ACCEPTED IF ABS|F(X)]<EPS'//

NSIG- SECOND CONVERGENCE CRITERION. A TRIAL'/

ROOT, X, IS ACCEPTED In IT AGREES WITH'/

THE PREVIOUS TRIAL VALUE TO NSIG SIGNI-'/

nICANT DIGITS.'//

ITNAX- THE MAXIMUM NUMBER On ITERATIONS PER'/

SUBINTERVAL'//

LOW- THE LOWER BOUND OF THE SEARCH INTERVAL'//

HIGH- THE UPPER BOUND OF THE SEARCH INTERVAL'//

NDIV- THE NUMBER OF SUBDIVISIONS IN THE MAIN'/

SEARCH INTERVAL [LOW,HIGH]'//}

'CALCULATION PARAMETERS:',2X,A,//,T4,'EPS-',Ti4pE10.3

,/,T4,'NSIG-',T14,I4,/,T4,'ITMAX-',T14,I4,/,T4,'NE-,,
T14,I3}

'FILE:',2X,A//,T30,'ZZROS',/

TS,'XLL',T21,'XRR',T36,'FXL',T53,'nXR',/)

'XRR',T36,'FXL',T53,'FXR',/)
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C

C

10

15

SUBROUTINE ZFALSE(EPS,NSIG,XL,XR,XAPP,IT/qAX,IER)

DOUBLE PRECISION F2oEPS,XL,XRoXAPP,ZERO,TEN,HALF,XLL,XRR

DOUBLE PRECISION EPSP,FXL,FPREV,FXR,FXAPP

PARAMETER (ZERO-0.0D0,TEN-10.0D0,HALPm0.SD0)

COMMON NE,ITYPE,EP
IER - 0

IC - 0

XLL m DMINI(XL°XR)

XRR " DMAXI(XL,XR)

IF(XL .NE. XLL)IER - 35

EPSP - TEN**(-NSIG)

FXL " F(XLL)

PPREV - FXL

FXR - P(XRR}

IF (rXL*FXR} 15,10,5

IER-129

WRITE(II,555)XLL,XRR,FXL,FXR

GO TO 40

TERMINAL ERROR

FXL OR FXR - 0

XAPP - XRR

IF (FXL .E0. ZERO) XAPP - XLL

WRITE(I1,556)XLL,XRR,FXL°FXR

GO TO 40

COMPUTE APPROXIMATE ROOT

XAPP - XLL+FXL*(XRR-XLL)/(FXL-FXR)

FXAPP - F(XAPP)
IF (DABS(FXAPP) .GT. EPS) GO TO 20

IF (ITYPE.EQ.1) THEN
WRITE(II,600) XL,XR,FXAPP

ELSE

WRITE(11,601) XL,XR,FXAPP

ENDIF

GO TO 40
DETERMINE WHETHER APPROXIMATE ROOT

LIES BETWEEN XAPP AND XLL OR XAPP

AND XRR

20 IF (FXAPP*FXL .GT. ZERO) GO TO 25

XRR - XAPP

FXR - FXAPP

IF (FPREV*FXR .GT. ZERO) FXL - HALF*FXL

FPREV - FXR

GO TO 30

25 XLL - XAPP

FXL - FXAPP

IF (FPREV*FXL .GT. ZERO) FXR - HALFtFXR

FPREV - FXL

30 IF (XRR-XLL .GT. EPSP*DABS(XRR)) GO TO 35

IF (ITYPE.EO.I) THEN

WRITE(II,600) XL,XR,FXAPP

ELSE

WRITE(II,601) XL,XR,FXAPP

ENDIF

GO TO 40

35

40

9000
555

556
6O0

601
9005

CONTINUE FOR ITMAX ITERATIONS

IC - IC+l

IF (IC .LE. ITMAX) GO TO 15

IER - 130

IF (IER .ME. 0) GO TO 9000

GO TO 9005

CONTINUE

FORMAT(2X,FI0.2o ° TO',F10.2,6X,Ell.4,6XoEI1.4)

FORMAT(2X,FI0.2,' TO',F10.2,6X,Ell.4,6X,Ell.4,' *°)

FORMAT(2X,F10.2,' TO',F10.2,SX,'ZERO: F- ',Ell.4)

FORMAT(2X,F10.2,' TO',F10.2,SX,'POLE: P- ',Eli.4)

RETURN

END
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DOUBLE PRECISION FUNCTION F(X)

C THIS FUNCTION DETERNINES THE VALUE OF F BASED ON THE TRANSFER
C MATRIX GENERATED BY THE BUILD SUBROUTINE. F CAN BE A FUNCTON TO
C DETERMINE ZERO LOCATION OR POLE LOCATION DEPENDING ON THE FLAG
C ITYPE.

C VARIABLES

C ITYPE- CALC TYPE: ZmZERO, 2-POLE {I)
C F- VALUE OF FUNCION (R)

C ONG- TRIAL FREOUENCY (C)

C TN- OVERALL TRANSFER RATRIX OF HODEL (R)

C WRITTEN BY DOUG GIRVIN, 1991

DOUBLE CONPLEX ONG

DOUBLE PRECISION TH,CI,C2,C3,C4,CS,C6,NUN,DEN,X,EP

DIHENSION TN(4,4)

CONNON NE,ITYPE,EP

IF(ITYPE.EO.I)TSEN
OHG-DCNPLX(0.000,-X)
CALL BUILD(ONG,TH)

C CALCULATE FUNCTION THAT EVALUATES ZEROS

CI-TN(I,2)*TH(3.3)*TH(4,4)

C2-TH(I,2)*TH(],4)*TH(4,3)

C3-TN(1,3)*TN(3,4)*TN(4,2)
C4-T_(1,3)*TH(3,2)*TN(4,4)
C5-TH(1,4)*TH(3,2)*TM(4,3)
C6-TN(I,4)*TH(3,3)*TM(4,2)
NUN-C1-C2+C3-C4÷CS-C6
DEN-(TM(3,4)*TR(4,2))-(T_(3o2)*TN(4,4))
Fm-NUN/DEN

ELSE

ONG-DCNFLX(X,0.0D0)
CALL BUILD(ONG,TN)

C CALCULATE FUNCTION THAT EVALUATES POLES

F-(TN(3,2)*TN(4,4))-(TN(3o4)*TN(4,2))

END IF
RETURN

END ..
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SUBROUTINE BUILDiOMG,TM)

C THIS SUBROUTINE GENERATES THE OVERALL TRANSFER MATRIX FOR THE

C MODELED BEAR BY MULTIPLYING THE ELEMENT TRANSFER MATRICES GENERATED

C BY THE BEAH4 SUBROUTINE. MULTIPLICATION IS PERFORMED BY THE NUL

C SUBROUTINE. ALL CALCULATIONS ARE PERFORMED IN DOUBLE PRECISION

C AND DOUBLE COMPLEX FOR HIGHER ACCURACY. THIS SUBROUTINE USES THE

C REAL FORM OF THE B MATRIX.

C VARIBLES:

C IE- ELEMENT NUMBER (I)

C NE- TOTAL NUMBER OF ELEMENTS IN MODEL (I)

C OMG- TRIAL FREQUENCY (C)

C B- ELEMENT TRANSFER MATRIX (R)

C TM- OVERALL TRANSFER MATRIX OF MODEL (R)

C WRITTEN BY DOUG GIRVIN, 1991

10

20

DOUBLE COMPLEX ONG

DOUBLE PRECISION B,TN,EP

COMMON NE,ITYPE,EP

DIMENSION B(4,4), TN(4,4),

DO 20 IE-I,NE

CALL BZAM4(IE,ONG,B)

IF (IE.EQ.I} THEN

DO I0 1-1,4

DO 10 J-l,4

TM(I,J)-B(I,J)

GOTO 20

ELSE

CALL MUL(B,TM,4)
ENDIF

CONTINUE
RETURN

END

EP{100,5)

85



SUBROUTINE BEAN4(IE,OMG,B)

C THIS SUBROUTINE GENERATES THE TRANSFER MATRIX FOR A EULER-BERNOULLI

C BEAM ELEMENT GIVEN THE ELEHENT NUMBER AND THE TRIAL FREOUENCY.

C ALL CALCULATIONS ARE PERFORMED IN DOUBLE PRECISION AND DOUBLE

C COMPLEX FOR HIGHER ACCURACY. THIS SUBROUTINE RETURNS THE B MATRIX
C AS A REAL MATRIX.

C VARIABLES:

C IE- ELEMENT NUMBER (I)

C OHO- TRIAL FREOUENCY (C)

C BC- ELEMENT TRANFER MATRIX (C)

C B- ELEMENT TRANSFER MATRIX (R)

C EP- ELEMENT PARAMETER MATRIX (R)

C WRITTEN BY DOUG GIRVIN, 1991

DOUBLE PRECISION RPL,L,REI,CEI,EP,B

DOUBLE COMPLEX SC,OMG,OMG2,EI,B4,B2,BI,AR,CCS,CSN,CEP,CEN

DOUBLE COHPLEX CCSH,CSNH,C0,CI,C2,C3

COMMON NE,ITYPE,EP

DIMENSION B(4,4),BC(4,4),EP(100,5)

C PRELIMINARY CALCULATIONS

ORG2- ORG*ORG

L- EP(IE,1)

REI- EP(IE,4)*EP(IE,3)

CEI- EP(IE,3)*EP(IE,5)

EI- DCMPLX(REI,CEI)

MPL- EP(IE,2)

B4m RPL*OMG2*L**4/EI

C VAIABLES NEEDED TO CALCULATE BC MATRIX

B2" CDSQRT(B4)

BI- CDSORT(B2)

AR" L*L/EI

CCS- CDCOS(BI)

CSN" CDSIN(BI)

CEP- CDEXP(B1)

CEN- CDEXP(-H1)

CCSH- 0.5D0*(CEP+CEN)

CSNH- 0.BD0*(CEP-CEN)

C0- 0.5D0*(CCSH+CCS)

C1" 0.5D0*(CSNH÷CSN)/B1

C2" 0.BD0*(CCSH-CCS)/B2

C3" 0.BD0*(CSNH-CSN)/(BI*B2)

C CALCULATE UPPER HALF OF HC MATRIX

BC 1,1)- C0

BC 1,2)- L*Cl

BC 1,3)- AM*C2

BC 1,4)- AR*L*C3

BC 2oi)- B4*C3/L

BC2o2)- C0

BC 2,3)- AR*C1/L

Be, 3,1)- B4*C2/AR

BCI 3,2)m B4*L*C3/AR

8CI 4,1)- B4*C1/(AR*L)

C CONVERT BC TO REAL B MATRIX

DO 20 I-1,4

DO 20 J'l,5-I

20 B(I,J)-DREAL(BC(I,J))

C GENERATE LOWER HALF OF B MATRIX (MIRROR IMAGE)

DO 10 I-1,3

IS- S-I

IU- 4-I

DO 10 J'I,IU

JS- 5-J

I0 B(JS,IS)- B(I,J)

RETURN

END
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SUBROUTINE HUL(X,Y,N)

C THIS SUBROUTINE MULTIPLIES TWO REAL EATRICES IN THE ORDER X'Y,

C AND STORES THE RESULT IN Y (J_ATRIX X IS PRSERVED). THE MATRICES NUST

C BE SOUARE AND HAVE DIMENSIONS N BY N.

C VARIABLES:

C N- SIZE OF MATRICES (I)

C X- MATRIX (R)

c Y- HATRIX (a)
C T- TEMPORARILY STORES RESULT (R}

C WRITTEN BY DOUG GIRVIN, 1991

lO

2O

DOUBLE PRECISION X,Y,T

DIMENSION X(4,4), Y(4,4), T(4,4)

DO 10 I-I,N

DO 10 J-1,N

T(I,J)-0.0D0

DO 10 K-1,N

T(I,J)-T(I,J)+X(I,R)*Y(R,J)
DO 20 I-I,N

DO 20 J-1,N

Y(I,J)-T(I,J)

RETURN

END
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